$t\bar{t} + \gamma$ Production
and the
Top Quark Electric Charge

Markus Schulze
in collaboration with K. Melnikov and A. Scharf

[Phys.Rev. D83 (2011) 074013]
One of Tevatron`s greatest legacy:

- Discovery of the top quark
- Measurement of the cross section
- Determination of the mass
- Measurement of the FB asymmetry
- Plus: decay width, spin correlations, W helicity fractions, $|V_{tb}|^2$, ...
What do we know about top quark electroweak couplings?

- electric charge,
- magn./electr. dipole mom.,
- weak charge,
- Yukawa coupl.
Electroweak couplings

What do we know about top quark electroweak couplings?

- electric charge,
- magn./electr. dipole mom.,
- weak charge,
- weak charge,
- Yukawa coupl.

This is where the LHC takes over:

\[pp \rightarrow t\bar{t} + \gamma \]
\[pp \rightarrow t\bar{t} + Z \]
\[pp \rightarrow t\bar{t} + \text{Higgs} \]

Studies of \(t\bar{t}Z \) and \(t\bar{t}H \) require at least \(\mathcal{L} = 100 \text{ fb}^{-1} \) (14 TeV)

Let's study \(t\bar{t}\gamma \) first and see what we can do for \(Q_t \).
Top quark electric charge

What do we know about the top quark electric charge?
Top quark electric charge

What do we know about the top quark electric charge?

[Chang,Chang,Ma]: $m_{Q_{4u}} = 172$ GeV, $m_{t_{2/3}} \geq 356$ GeV

$Q_t = 2/3$

$Q_t = -4/3$

✓ electroweak precision tests, ✓ Tevatron searches, ✓ LHC searches
Top quark electric charge

CDF: 5.6 fb\(^{-1}\) (2011)

1) identify W-boson charge through lepton charge
2) pair b-jet with W-boson (kinem. fits to \(m_{\text{top}}\), \(M_W\))
3) measure b-jet charge (JetCharge Algorithm)

\[
\text{SM top quark charge } \leftrightarrow \ Q(W) \cdot Q(\text{b-jet}) < 0
\]

\[
\text{XM top quark charge } \leftrightarrow \ Q(W) \cdot Q(\text{b-jet}) > 0
\]

result: 416 SM events vs. 358 XM events
⇒ Exclusion of pure XM hypothesis with 95% C.L.

only 56\% signal purity for SM top quarks
$t\bar{t}$ pairs in association with a photon

\[pp \rightarrow t\bar{t} + \gamma \text{ at the LHC} \]
$t\bar{t}$ pairs in association with a photon

\[pp \rightarrow t\bar{t} + \gamma \text{ at the LHC} \]

We are interested in the correlation $\sigma_{t\bar{t}\gamma}(Q_{top}^2)$.

Charge measurement is mainly a counting experiment.

NLO normalization is important!

LHC: high energy+luminosity \quad \Rightarrow \quad \text{expect } \sim 1000 \text{ events from } 10 \text{ fb}^{-1}

dominance of gluon flux \quad \Rightarrow \quad \text{few photons from ISR (} \sim Q_{top} \text{)}

but: „pollution“ from photon emission off top decay products (FSR)
$t\bar{t}$ pairs in association with a photon

[Baur, Juste, Rainwater, Orr]:

Leading-order study

At the LHC with 10 fb$^{-1}$ an accuracy of 10% on Q_t is feasible. „If scale uncertainty is reduced to 10%, an improvement in precision by a factor of two seems possible“

[Duan, Ma, Zhang, Han, Guo, Wang]:

Next-to-leading-order QCD calculation

- small/large K-factor at the Tevatron/LHC
- FB asymmetry of -11%
- stable top quarks
Our calculation

Hadronic production of $t\bar{t} + \gamma$ at NLO QCD including decays.

\[pp \rightarrow t\bar{t} + \gamma \rightarrow b\bar{b} \ell \nu jj + \gamma \]

2 → 7 process is complicated at NLO QCD.

What is important?

- spin correlations: acceptances
- photon radiation in decay: large contribution
- NLO corrections in production & decay: normalization, scale dependence, leading soft/collinear emissions

What can be approximated?

- largely off-shell top quarks, W’s: neglect non-resonant contributions
 ⇒ narrow width approximation valid up to $O(\alpha_s \Gamma/m)$
- neglect shower effects and higher order threshold corrections: observables under consideration should not be very sensitive
Results

LHC

leptons+jets channel

std. acceptance cuts

\[\sigma_{t\bar{t}\gamma}^{\text{LO}} = 74.5^{+24.0}_{-16.9} \text{ fb} \]

\[\sigma_{t\bar{t}\gamma}^{\text{NLO}} = 138^{+30}_{-23} \text{ fb} \]

- large K-factor ~1.9
- no reduction of scale dependence (opening up of q-g channel at NLO)
Important:
A large fraction of events from radiative top decays

\[\frac{\sigma_{\text{decay}}}{\sigma_{\text{tot}}} = 56\% \]

FSR photons are not very soft and well separated from b quarks.
Results

Exotic top quarks

\[
\sigma_{tt\gamma}^{\text{NLO}} = 138 \text{ fb} \quad Q_t = \frac{2}{3} \rightarrow -\frac{4}{3} \quad \sigma_{tt\gamma}^{\text{NLO}} = 243 \text{ fb}
\]

Naive expectation of Q_t^2 scaling fails because of large contribution from radiative top decay
Results

Three strategies:

1.) measure the total cross section

2.) study ratio of cross sections

3.) apply cuts to enhance Q_t^2 dependence
2.) Ratio of cross sections $\frac{\sigma_{t\bar{t}\gamma}}{\sigma_{tt}}$

\[
\begin{align*}
\sigma_{t\bar{t}\gamma}^{Q_t=2/3} / \sigma_{tt} &= \left\{ \begin{array}{ll} 5.66^{+0.03}_{-0.02} \times 10^{-3}, & \text{LO;} \\ 6.33^{+0.26}_{-0.14} \times 10^{-3}, & \text{NLO,} \end{array} \right. \\
\sigma_{t\bar{t}\gamma}^{Q_t=-4/3} / \sigma_{tt} &= \left\{ \begin{array}{ll} 10.4^{+0.2}_{-0.2} \times 10^{-3}, & \text{LO;} \\ 11.2^{+0.3}_{-0.2} \times 10^{-3}, & \text{NLO.} \end{array} \right.
\end{align*}
\]

- Ratios are significantly more stable against NLO corrections
- Small scale uncertainties
- Some experimental uncertainties cancel
3.) Choose cuts to enhance Q_t^2 dependence

Inspired by U.Baur et.al.: suppress radiative top decays

\[m_T(b\ell\gamma; E_T^{\text{miss}}) > 180 \text{ GeV}, \quad m_T(\ell\gamma; E_T^{\text{miss}}) > 90 \text{ GeV}, \]
\[160 \text{ GeV} < m(bjj) < 180 \text{ GeV}, \quad 70 \text{ GeV} < m(jj) < 90 \text{ GeV} \]
3.) Choose cuts to enhance Q_t^2 dependence

- strong reduction of scale dependence
- smaller K-factor
- enhanced Q_t dependence
3.) Choose cuts to enhance Q_t^2 dependence

- strong reduction of scale dependence
 smaller K-factor

- enhanced Q_t dependence

However:
- much smaller cross section
 $\sigma^{\text{nocuts}}_{\text{SM } t\bar{t}\gamma} = 138 \text{ fb}$
 $\sigma^{\text{cuts}}_{\text{SM } t\bar{t}\gamma} = 26 \text{ fb}$
3.) Choose cuts to enhance Q_t^2 dependence

Luminosity \mathcal{L} to separate SM and XM hypothesis at 3\(\sigma\) C.L.:

$$\frac{\mathcal{L}_{\text{no cuts}}}{\mathcal{L}_{\text{cuts}}} = \begin{cases} 1.98 \pm 0.02, & \text{LO;} \\ 1.12 \pm 0.08, & \text{NLO;} \end{cases}$$

100\% gain at LO is reduced to 10\% gain at NLO
SUMMARY

- $t\bar{t} + \gamma$ is an interesting LHC signal that can be studied soon

- we provide NLO QCD predictions for realistic observables

- large fraction of events from radiative top decays

- measurement of the top quark electric charge at the LHC is the first step towards studies of other electroweak couplings
SUMMARY

- $t\bar{t} + \gamma$ is an interesting LHC signal that can be studied soon
- we provide NLO QCD predictions for realistic observables
- large fraction of events from radiative top decays
- measurement of the top quark electric charge at the LHC is the first step towards studies of other electroweak couplings
- what I left out:
 - we use unitarity methods to calculate virtual corrections
 - $t\bar{t} + \gamma$ measurement at the Tevatron (New Physics search)
 - FB asymmetry
Extras
Impact of NLO corrections in the decay

LHC (7TeV) semi-lept. channel std. accept. cuts
-13% to total cross section
Markus Schulze, Johns Hopkins University

Tevatron results

\[\sigma_{t\bar{t}\gamma}^{\text{LO}} = 2.85^{+1.14}_{-0.75} \text{ fb} \]

\[\sigma_{t\bar{t}\gamma}^{\text{NLO}} = 2.64^{+0.21}_{-0.03} \text{ fb} \]

\[\frac{d\sigma}{dp_T(\gamma)} / \frac{d\sigma}{dp_T(\gamma)} \]

\[\text{K-factor} \]

\[d\sigma_{t\bar{t}\gamma} / dp_T(\gamma) \]

\[14 \pm 1 \text{ events vs. CDF: } 14 \pm 3 \text{ events} \]

(LO: 16\pm5 events)
Extras

Tevatron results

<table>
<thead>
<tr>
<th>Standard Model Source</th>
<th>$e\gamma b E_T$</th>
<th>$\mu\gamma b E_T$</th>
<th>$(e + \mu)\gamma b E_T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}\gamma$ (semileptonic)</td>
<td>5.98 ± 1.10</td>
<td>5.21 ± 0.97</td>
<td>11.19 ± 2.04</td>
</tr>
<tr>
<td>$t\bar{t}\gamma$ (dileptonic)</td>
<td>1.47 ± 0.27</td>
<td>1.27 ± 0.24</td>
<td>2.74 ± 0.50</td>
</tr>
<tr>
<td>$W^{\pm}\gamma$</td>
<td>0 ± 0.07</td>
<td>0 ± 0.07</td>
<td>0 ± 0.09</td>
</tr>
<tr>
<td>$W^{\pm}\gamma$</td>
<td>0 ± 0.05</td>
<td>0.05 ± 0.05</td>
<td>0.05 ± 0.07</td>
</tr>
<tr>
<td>$W^{\pm}\gamma$</td>
<td>0.15 ± 0.07</td>
<td>0.06 ± 0.05</td>
<td>0.21 ± 0.08</td>
</tr>
<tr>
<td>W^Z</td>
<td>0.05 ± 0.05</td>
<td>0.05 ± 0.05</td>
<td>0.09 ± 0.06</td>
</tr>
<tr>
<td>WW</td>
<td>0.06 ± 0.03</td>
<td>0.06 ± 0.03</td>
<td>0.11 ± 0.03</td>
</tr>
<tr>
<td>Single Top (s-channel)</td>
<td>0.09 ± 0.10</td>
<td>0 ± 0.10</td>
<td>0.09 ± 0.13</td>
</tr>
<tr>
<td>Single Top (t-channel)</td>
<td>0.14 ± 0.14</td>
<td>0.13 ± 0.14</td>
<td>0.27 ± 0.19</td>
</tr>
<tr>
<td>$\tau \rightarrow \gamma$ fake</td>
<td>0.20 ± 0.08</td>
<td>0.10 ± 0.05</td>
<td>0.29 ± 0.09</td>
</tr>
<tr>
<td>Jet faking γ ($e\gamma E_T, j \rightarrow \gamma$)</td>
<td>5.75 ± 1.76</td>
<td>1.79 ± 1.56</td>
<td>7.54 ± 2.53</td>
</tr>
<tr>
<td>QCD Jets</td>
<td>1.47 ± 0.37</td>
<td>1.02 ± 0.32</td>
<td>2.50 ± 0.51</td>
</tr>
<tr>
<td>$ee \gamma b, e \rightarrow \gamma$</td>
<td>0.38 ± 0.38</td>
<td>0.02 ± 0.020</td>
<td>0.40 ± 0.38</td>
</tr>
<tr>
<td>$\mu e \gamma b, e \rightarrow \gamma$</td>
<td>0.94 ± 0.19</td>
<td>-0.49 ± 0.11</td>
<td>0.49 ± 0.11</td>
</tr>
<tr>
<td>Total SM Prediction</td>
<td>16.7 ± 2.2 (tot)</td>
<td>10.3 ± 1.9 (tot)</td>
<td>26.9 ± 3.4 (tot)</td>
</tr>
<tr>
<td>Observed in Data</td>
<td>17</td>
<td>13</td>
<td>30</td>
</tr>
</tbody>
</table>

CDF Run II Preliminary 6.0 fb$^{-1}$

- Data$(e+\mu)$
- $t\bar{t}\gamma$
- $W\gamma + HF$
- fake b-tag
- fake j fakes γ
- fake l/E_T
- EWK
- τ fake γ
- e fake γ

Markus Schulze, Johns Hopkins University
Coupling the photon at NLO

Master formula: \[d\sigma^{\text{NWA}} = d\sigma_{t\bar{t}\gamma} dB_t dB_{\bar{t}} + d\sigma_{t\bar{t}} (dB_{t\gamma} dB_{\bar{t}} + dB_t dB_{\bar{t}\gamma}) \]

expand in \(\alpha_s \):

\[d\sigma^{\delta\text{NLO}} = d\sigma_{t\bar{t}\gamma}^{\delta\text{NLO}} dB_t^\text{LO} dB_{\bar{t}}^\text{LO} \]

\[+ d\sigma_{t\bar{t} \gamma}^\text{LO} \left(dB_t^{\delta\text{NLO}} dB_{\bar{t}}^\text{LO} + dB_t^\text{LO} dB_{\bar{t}}^{\delta\text{NLO}} \right) \]

\[+ d\sigma_{t\bar{t}}^{\delta\text{NLO}} \left(dB_{t\gamma}^\text{LO} dB_{\bar{t}}^\text{LO} + dB_{t\gamma}^\text{LO} dB_{\bar{t}\gamma}^\text{LO} \right) \]

\[+ d\sigma_{t\bar{t}}^\text{LO} \left(dB_{t\gamma}^{\delta\text{NLO}} dB_{\bar{t}}^\text{LO} + dB_{t\gamma}^\text{LO} dB_{\bar{t}}^{\delta\text{NLO}} \right) \]

\[+ dB_{t\gamma}^\text{LO} dB_{\bar{t}}^{\delta\text{NLO}} + dB_{t\gamma}^{\delta\text{NLO}} dB_{\bar{t}}^\text{LO} \]
FB asymmetry in ttbar+photon

\[A_{FB} = \frac{N(y_t>0) - N(y_t<0)}{N(y_t>0) + N(y_t<0)} \]

- \(t\bar{t} \) asymmetry appears only at NLO QCD \[[Kühn,Rodrigo] \]
 Theory prediction \(A_{FB}(t\bar{t}) = 5\% \) in tension with measurement \((2\sigma) \)
 Complete NNLO correction unknown, but indications for robustness

- \(t\bar{t} + \gamma \) asymmetry appears already at LO
 \[A_{FB}^{LO}(t\bar{t}\gamma) = -17\%, \quad A_{FB}^{NLO}(t\bar{t}\gamma) = -12\% \]
 The 5\% reduction at NLO can be understood. \[[Melnikov,MS : t\bar{t} + \text{jet}] \]
 Similar effect for \(t\bar{t}\text{jet} \)
 \[A_{FB}^{LO}(t\bar{t}\text{jet}) = -8\%, \quad A_{FB}^{NLO}(t\bar{t}\text{jet}) = -2\% \]
FB asymmetry in ttbar+photon
Extraction of total cross section

Measure $\sigma_{b\bar{b}l\nu jj\gamma}^{\text{meas.}}$ and extract $\sigma_{t\bar{t}\gamma}$ through dividing by branchings

$$\sigma_{t\bar{t}\gamma} = \sigma_{b\bar{b}l\nu jj\gamma}^{\text{meas.}} \times B(t \rightarrow b\ell\nu)^{-1} \times B(t \rightarrow \bar{b}jj)^{-1}$$

is wrong.

Instead, the radiative top decays have to be treated as „background“,

$$\sigma_{t\bar{t}\gamma} = \left(\sigma_{b\bar{b}l\nu jj\gamma}^{\text{meas.}} - \sigma_{b\bar{b}l\nu jj\gamma}^{\text{decay}}\right) \times B(t \rightarrow b\ell\nu)^{-1} \times B(t \rightarrow \bar{b}jj)^{-1}.$$