MINI-REVIEW BSM PHYSICS

Kevin Black Boston University

STANDARD MODEL

Awaiting the final details or a revolution..

DRAWBACKS

- In principle SM with a 140 GeV Higgs could be complete (think Mendeleev's table for chemistry)
- However it seems incomplete
 - Why are the Higgs coupling to fermions what they are?
 - What about Gravity?
 - Why Three Generations?
 - What about Dark Matter?

THE PLOT THICKENS

- Higgs also
 acquires mass from
 gauge bosons and
 fermions via loops
 - But are quadratically divergent
 - requires fine tuning!

ALTERNATIVES

- SUSY
- Technicolor
- Extra-Dimensions
- Little Higgs
- GUT
- new generations

PLAYERS

1.96 TeV ~10 fb⁻¹

7.0 TeV
~2 fb⁻¹
and growing

HEAVY GAUGE BOSONS

- Often arise in GUT theories as a left over symmetry (eg. an extra U(1) gives rise to a Z')
 - SSM
 - LR Symmetric: $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$
 - $E_6 \rightarrow SO(10)xU(1)_{\psi} \rightarrow S(U) \times U(1)_{\chi} \times U(1)_{\psi}$

• $G = U(1)_{\theta} = \cos(\theta) U(1)_{\chi} - \cos(\theta) U(1)_{\psi}$

Model	ψ	χ	η	I
θ	0	90	37.75	-52.24

HEAVY GAUGE BOSONS ORIGINS...

- Kalutza-Klien theories with extra dimensions give excited states of Standard Model gauge bosons
- Little Higgs theories have partners of W and Z
- SUSY without R parity

• ...

LIMITS FROM INDIRECT SEARCHES

• If Z' mixes with with Z for a sufficiently light Z' should see mixing effects

DIRECT LIMITS

Direct Limits (SSM)
LHC:
ATLAS ~1.83 TeV
CMS ~ 1.94 TeV

- Similar (or the same!) models also predict a heavy W
 - 'natural' in the same way a Z' is introduced by the breaking of some higher symmetry group to the SM
- Attractive Features:
 - IF coupling is similar to SM W/Z the W' would have a larger cross-section at a hadron collider
 - Generally avoid the strict indirect limits from LEP as they would have had to been produced in pairs there

W'PRODUCTION

- W' production in most considered models is not very sensitive to exact coupling
- Interference with SM W is important W' in particular in identifying the W'

W' DECAY

- W' Signatures:
 - Leptonic: e ν, μν, τν
 - Bosonic: WZ, Wγ
 - Hadronic: qq', tb, lN
- Large W' mass opens new channels
- Favored Decay modes depend highly on exact model (eg SSM compared to models where large coupling to 3rd generation)

CURRENT LIMITS

Limits (SSM)

ATLAS: 2.15 TeV

CMS: 2.27 TeV

note expected limit ~2.2 TeV in both cases

SUPERSYMMETRY

Postulate a symmetry between fermions and bosons

Minimal version doubles the amount of particles

Cancelation of quadratic divergences present in SM

Models with R parity would have a stable neutral particle as a dark matter candidate

UNIFICATION

- GUTs and SUSY were proposed independently though closely connected
- Introduction of new SUSY particles
 MAY modify the evolution of the coupling so that at they unify at high energy

SUSY MODELS

- SUSY is not one model but rather a collection
- R-parity, SUSY breaking scenarios, ...

THE GOOD, THE BAD, ...

- SUSY has a number of attractive features
 - Could explain a light Higgs naturally
 - Gauge Coupling Unification
 - Dark Matter Candidate
 - No New Forces
- Come at some cost
 - Many new particles: masses and mixing angles (set it and forget it)
 - What sets the SUSY mass scale?
 - What causes SUSY breaking?

SUSY LIMITS

Signal Region	≥ 2 jets	\geq 3 jets	≥ 4 jets	High mass
$E_{ m T}^{ m miss}$	> 130	> 130	> 130	> 130
Leading jet p_T	> 130	> 130	> 130	> 130
Second jet p_T	> 40	> 40	> 40	> 80
Third jet p_T	_	> 40	> 40	> 80
Fourth jet p_T	_	-	> 40	> 80
$\Delta \phi$ (jet, $E_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
$E_{ m T}^{ m miss}/m_{ m eff}$	> 0.3	> 0.25	> 0.25	> 0.2
$m_{\rm eff}$ [GeV]	> 1000	> 1000	> 500/1000	> 1100

$$m_{\text{eff}} \equiv \sum_{i=1}^{n} |\mathbf{p}_{\mathbf{T}}^{(i)}| + E_{\mathbf{T}}^{\text{miss}}$$

Process	Signal Region						
	≥ 2-jet	≥ 3-jet	≥ 4-jet,	≥ 4-jet,	High mass		
	≥ 2-jct		$m_{\rm eff} > 500~{ m GeV}$	$m_{\rm eff} > 1000~{ m GeV}$	Trigir mass		
Z/γ+jets	$32.5 \pm 2.6 \pm 6.8$	$25.8 \pm 2.6 \pm 4.9$	208 ± 9 ± 37	$16.2 \pm 2.1 \pm 3.6$	$3.3 \pm 1.0 \pm 1.3$		
W+jets	$26.2 \pm 3.9 \pm 6.7$	$22.7 \pm 3.5 \pm 5.8$	$367 \pm 30 \pm 126$	$12.7 \pm 2.1 \pm 4.7$	$2.2 \pm 0.9 \pm 1.2$		
tī+ Single Top	$3.4 \pm 1.5 \pm 1.6$	$5.6 \pm 2.0 \pm 2.2$	$375 \pm 37 \pm 74$	$3.7 \pm 1.2 \pm 2.0$	$5.6 \pm 1.7 \pm 2.1$		
QCD jets	$0.22 \pm 0.06 \pm 0.24$	$0.92 \pm 0.12 \pm 0.46$	$34\pm2\pm29$	$0.74 \pm 0.14 \pm 0.51$	$2.10 \pm 0.37 \pm 0.83$		
Total	$62.3 \pm 4.3 \pm 9.2$	$55 \pm 3.8 \pm 7.3$	984 ± 39 ± 145	$33.4 \pm 2.9 \pm 6.3$	$13.2 \pm 1.9 \pm 2.6$		
Data	58	59	1118	40	18		

huge gains in short period of time - limits approaching 1 TeV

TECHNICOLOR

- 'Dynamic' explanation of electroweak symmetry breaking
- Instead of Higgs particle new strong interactions
- Technicolor:
 - New Strong Dynamics : SU(N_T) gauge theory similar to QCD
 - N_T²-1 new gauge bosons:technigluons
 - In analogy with QCD breaking of the chiral symmetry produces
 - Goldstone bosons (technipions):
 - 3 technipions are eaten to become longitudinal W and Z

TECHNICOLOR

- As a new strongly interacting theory would produce a whole new set of QCD like particles
 - Search for the lightest ones: π_T , ϱ_T , ϖ_T
 - Some model dependence but popular searches for
 - $\varrho_T \rightarrow W \pi_T \rightarrow l \upsilon b b$ (best reach at Tevatron, harder at LHC)
 - $\bullet \ \varrho_T \rightarrow WZ$
 - $QT \rightarrow 11$

TECHNICOLOR LIMITS

Limits from Tevatron ~ several hundred GeV

Limits from LHC: Forthcoming!

CDF BUNDP

- Recently much excitement over bump seen in Wjj spectrum at CDF
- 4.1 σ in significance
- $\varrho_T \rightarrow W \pi_T \rightarrow l \nu j j ????$
- measured cross-section ~3±0.7 pb roughly consistent with technicolor prediction

BUT..

- Unfortunately excess is not confirmed by D0
- Ongoing
 investigations to
 compare analysis and
 results

ATLAS RESULTS

- ATLAS also does not see an excess in the same region
- Note however that conclusions are VERY model dependent
 - Eichten, Lane, Martin point out that if it was technicolor do not expect to see anything vet at LHC

CONCLUSIONS

- Too many BSM scenarios to fit into one talk!
- Many exciting times ahead LHC has already doubled the limits on many models
- Hopefully we will produce more than limits!