

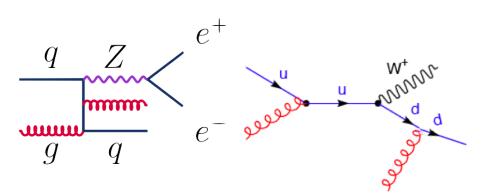
Rates of Jets Produced in Association with Vector Bosons at CMS

Kira Grogg University of Wisconsin

August 9, 2011

August 9, 2011

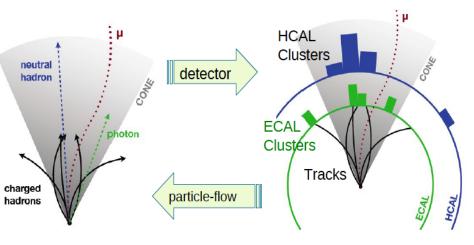
K. Grogg, UW-Madison



Motivation and Goals

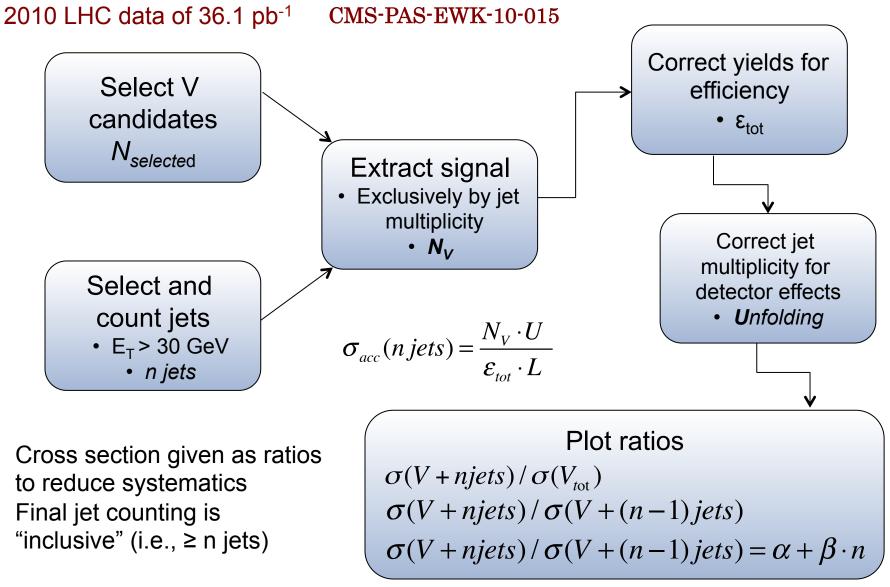
- V+jets characterized by jets, high energy leptons and significant missing E_T in the final state
 - *Major background for new physics*
- Test of perturbative QCD calculations
 - Verification of theoretical crosssection and parton distribution functions (PDFs)
- Start with ratio measurements where systematics from jet energy scale, luminosity, and lepton selection partially cancel
- Comparisons with ME+PS Monte Carlo

- Goal: measurement of the rate of events with a vector boson produced with the presence of jets
 - ♦ Jets are considered when above a given E_T threshold
 - A Inclusive rate of n jets (i.e., ≥ n jet) is given and events are not corrected for acceptance, for comparison with multiple theoretical models


Object Reconstruction

+

- Muons reconstructed using silicon tracker and muon chambers
 - Identification based on compatibility of tracker, calorimeters and muon chambers measurements
- + p_T resolution for EWK ~1-2%
- Electrons reconstructed using silicon tracker and PbWO₄ crystal calorimeter
 - Identification based on shower shape, Had/Em, track matching
- + E_T resolution for EWK ~1%


- Jets and Missing E_T reconstructed using particle flow technique
 - All constituent particles—electrons, muons, photons, neutral hadrons, and charged hadrons—are reconstructed from information in all sub-detectors
 - → Jets reconstructed from particles using anti-k_T algorithm with cone radius of 0.5

Analysis Flow

August 9, 2011

- + Electron selection
 - \Rightarrow p_T > 20 GeV
 - ↔ |η| < 2.5, excluding 1.4442 < |η| < 1.566
 - Identification, isolation, conversion rejection (see backup)
- Check for 2nd electron with
 - Identification, isolation, conversion rejection
 - ★ looser to increase statistics
 - \Rightarrow p_T > 10 GeV
 - ♦ |η| < 2.5, exclu. 1.4442 < |η| < 1.566</p>
 - \diamond 60 < M_{ee} < 120 GeV
- + No muons with $p_T > 15$
- + Transverse impact parameter $\delta_{xy} < 0.035$
- + HLT object match
- + For W(enu) only: $M_T > 20 \text{ GeV}$
 - \diamond From electron and Particle Flow Missing E_T
 - Necessary for data-driven fitting

If exists, event is Z(ee)

Acceptance

If does not exist, event is
 W(enu)

$$m_T = \sqrt{2 p_T^{(e)} p_T^{(v)} (1 - \cos \Delta \phi)}$$

$W \rightarrow munu and Z \rightarrow mumu Selection$

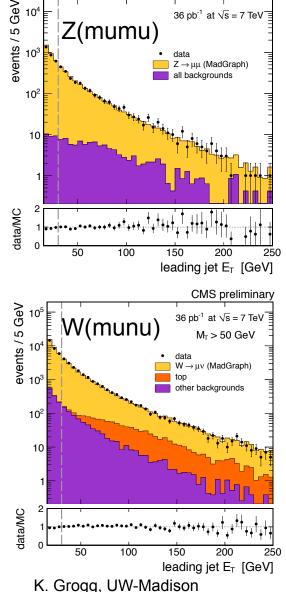
- + Global and Tracker muon with
 - \Rightarrow p_T > 20 GeV
 - ♦ |η| < 2.1</p>
 - $\Rightarrow \quad \text{Tracker muon: } n_{trk} > 10, n_{pixhits} > 1, d_{xy} < 2mm$
 - \diamond Global muon: one valid hit, c²/ndf < 10, 2 segments match track muon
 - ♦ Combined relative isolation < 0.15</p>
- + Check for 2nd muon with
 - ♦ Global

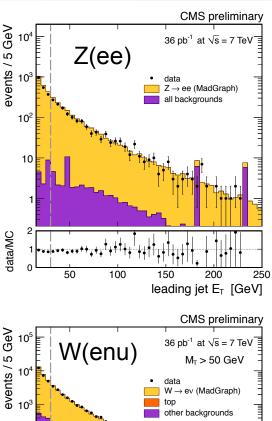
 - $\diamond \qquad 60 < M_{mumu} < 120 \text{ GeV}$
 - ♦ Looser to increase statistics

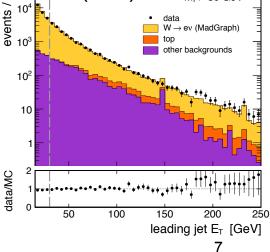
If exists, event is Z(mumu) If does not exist, event is W(munu)

Acceptance

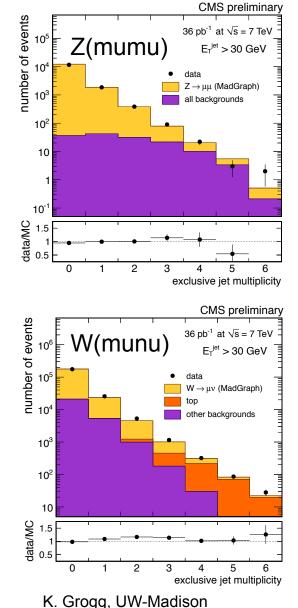
- For W(munu) only: $M_T > 20$ GeV
 - $m_T > 20 \text{ GeV}$ $m_T = \sqrt{2 p_T^{(e)} p_T^{(v)} (1 \cos \Delta \phi)}$
 - ♦ From muon and Particle Flow Missing E_T
 - Necessary for data-driven fitting



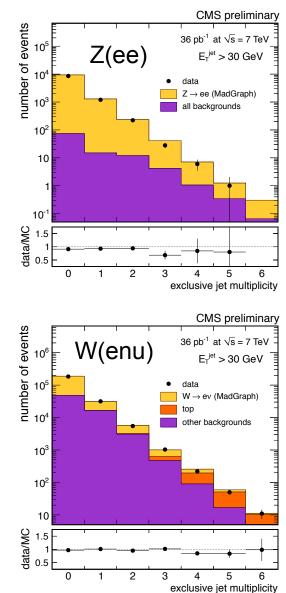

Leading Jet Transverse Energy


CMS preliminary

- Leading jet E_T after full selection applied
 - ♦ Dashed line indicates jet threshold of > 30 GeV
- Madgraph MC (signal) normalized to NNLO cross sections, backgrounds to (N)LO
- W M_T > 50 GeV to enhance signal
- Agreement with MC is very good



August 9, 2011



Exclusive Jet Multiplicity

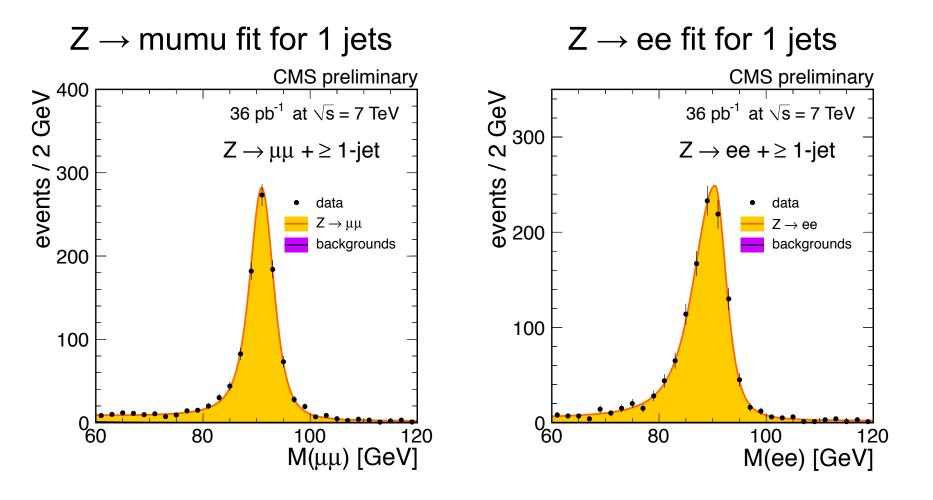
- Comparison of data to MC raw jet rates
- + Jet $E_T > 30 \text{ GeV}$
 - $\diamond \qquad |\eta| < 2.4$
- MadGraph MC (signal) normalized to NNLO cross sections, backgrounds to (N)LO
- Data in agreement with MadGraph+Pythia MC

- + Selection efficiency combines tag and probe and MC results
 - ♦ Tag and probe on Z+jets data and MC samples
 - \star Fits to invariant mass for probes passing and failing selection cuts
 - ★ W: ε_{reconstruction} x ε_{selection} x ε_{trigger}
 - * Ζ: ε_{reconstruction} x ε_{selection} x ε_{trigger} x ε'_{reconstruction} x ε'_{looser selection}
 - ♦ MC efficiency: full selection / gen leptons in acceptance
 - ★ Acceptance: generator lepton $p_T > 20$ GeV, eta < 2.5 (2.1 for muons)
 - ♦ Final efficiency used to correct yields (after signal extraction):
 - ★ MC * T&P data / T&P MC
- Muon efficiency from tag and probe only, and events are corrected before signal extraction

	0 jets	1 jets	2 jets	3 jets	≥ 4 jets
ε (Muons)	0.952	0.925	0.915	0.916	0.843
ε (Wenu)	0.718	0.659	0.599	0.557	0.471
ε (Zee)	0.666	0.620	0.582	0.578	0.477

- Extended unbinned maximum likelihood fit to the di-lepton invariant mass
- Signal modeled with Crujiff function (modified gaussian with left and right tails independent)

$$F_{S}(M_{ll}; \alpha_{L}, \alpha_{R}, \sigma_{L}, \sigma_{R}, M_{0}, N_{S}) = N_{S} e^{-\frac{(M_{ll} - M_{0})^{2}}{2\sigma^{2} + \alpha^{2}(M_{ll} - M_{0})^{2}}}$$


$$\sigma = \sigma_L(\sigma_R)$$
 for $M_{ll} < M_0(M_{ll} > M_0)$ and $\alpha = \alpha_L(\alpha_R)$ for $M_{ll} < M_0(M_{ll} > M_0)$.

- \diamond α_L determined from high purity data sample and fixed
- All other parameters floated, but constrained to be the same for n ≥ 1 samples
- + All backgrounds modeled with an exponential, floated for all bins
- For muons, events are weighted by efficiency as a function of n-jets, p_T, and eta before fitting

Z→II Fit Results

Background too low to be visible

K. Grogg, UW-Madison

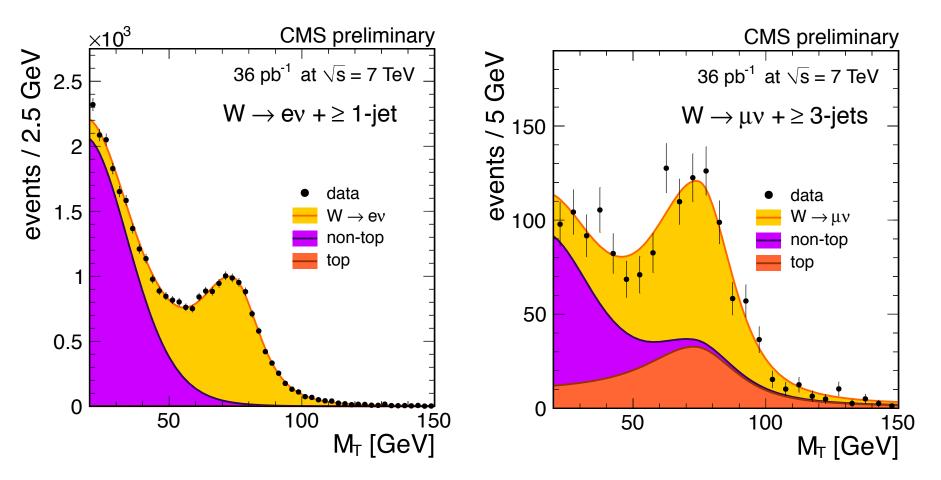
- + Use W M_T to distinguish signal from the majority of backgrounds
- + Use number of b-tagged jets to distinguish signal from top
 - \diamond Top decays to W, so it also peaks in M_T
 - Data-driven method, not relying on MC cross sections
 - ♦ See next slide for PDF
- Perform 2D fits of M_T x n_{btagged}
- + Species:
 - Signal (W) : cruijff or double cruijff (0-2 jets)
 - ★ Mean and resolutions of signal are floated (for 0, 1 & 2 jets)
 - ★ Mean for signal (3 & 4 jets) is floated
 - ♦ Top (ttbar, single top): cruijff
 - ★ Parameters fixed to MC values
 - ★ Divided in to three subspecies based on number of b-jets $(0, 1, \ge 2)$
 - ♦ Others (QCD, Z, W \rightarrow TV, photons): cruijff
 - ★ Initially fit to ID-inverted data sample
 - ★ All parameters floated

Probability distribution function for n b-tagged jets:

$$\begin{split} P(n_{j}^{tagged} | n_{j}, n_{bj}, \epsilon_{nob}, \epsilon_{b}) &= \\ \begin{cases} (1 - \epsilon_{nob})^{n_{j} - n_{bj}} \cdot (1 - \epsilon_{b})^{n_{bj}} & n_{j}^{tagged} = 0\\ (1 - \epsilon_{nob})^{n_{j} - n_{bj} - 1} \cdot \epsilon_{nob} \cdot (n_{j} - n_{bj}) \cdot (1 - \epsilon_{b})^{n_{bj} + } & n_{j}^{tagged} = 1\\ (1 - \epsilon_{nob})^{n_{j} - n_{bj}} \cdot (1 - \epsilon_{b})^{n_{bj} - 1} \cdot (\epsilon_{b}) \cdot n_{bj} & n_{j}^{tagged} = 1\\ 1 - P(0) - P(1) & n_{j}^{tagged} \ge 2 \end{split}$$

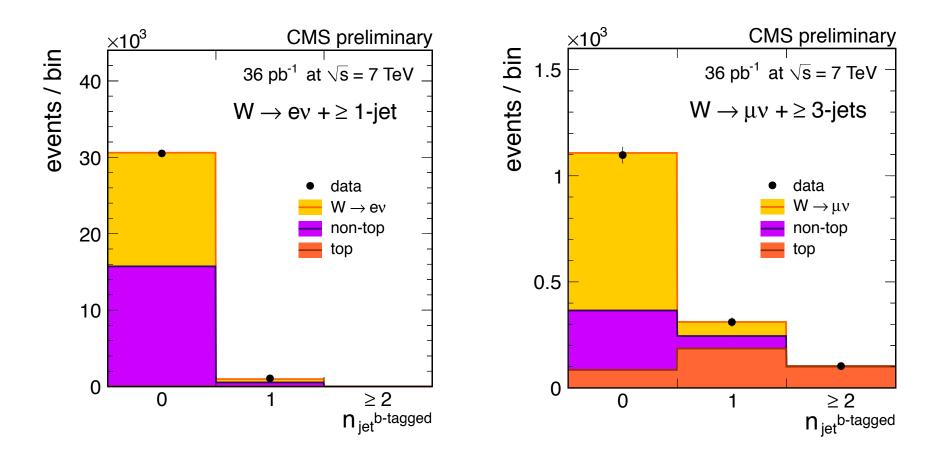
 \diamond n_b = number of b-tagged jets

 \diamond n_{bi} = number of jets in acceptance that are b-flavored (true)

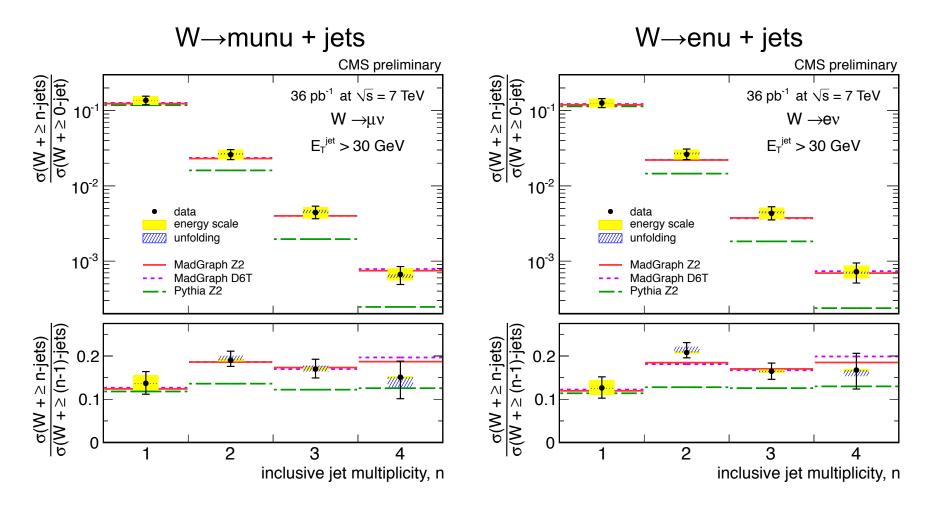

- \diamond ϵ_{nob} = mistag rate
 - ★ 2.42 ± 0.03 (stat) ± 0.5 (syst)% from MC and validated on data
- \diamond ϵ_{b} = tag rate
 - ★ 63 ± 6.3% from MC and validated on data

1 jet events, electron

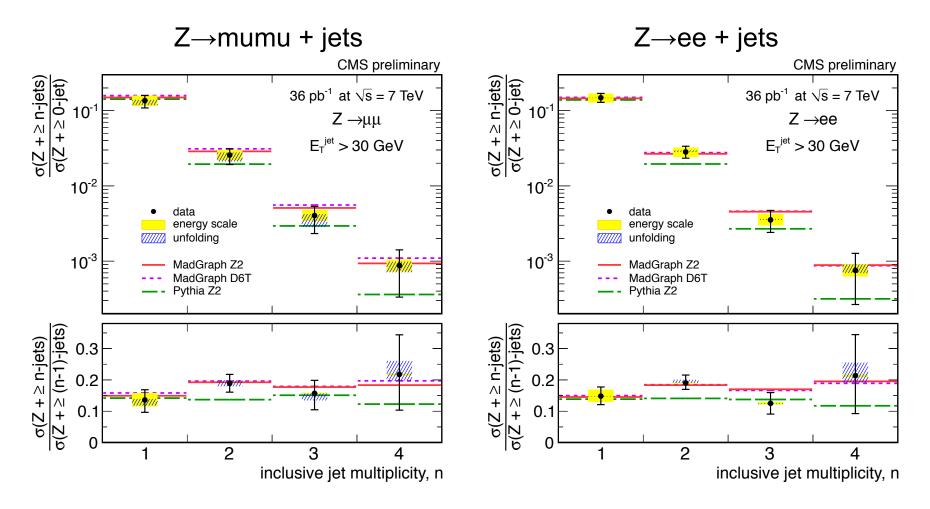
3 jet events, muon


K. Grogg, UW-Madison

1 jet events, electron


3 jet events, muon

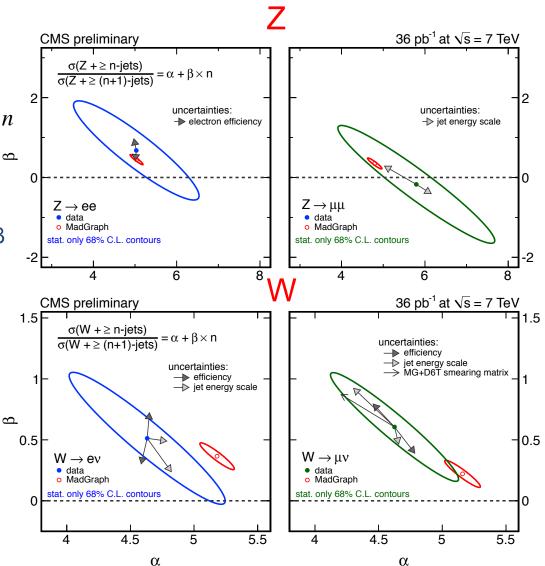
K. Grogg, UW-Madison



Jet multiplicity unfolded using singular value decomposition to correct for migrations Results agree with ME matched MCs but not with LO Pythia (as expected)

Z+Jets Cross Section Ratios

Jet multiplicity unfolded using singular value decomposition to correct for migrations Results agree with ME matched MCs but not with LO Pythia (as expected)


Berends-Giele Scaling

 A further constraint is placed requiring

 $\sigma(V+njets) / \sigma(V+(n+1)jets) = \alpha + \beta \cdot n$

- + Naïve LO expectation of σ' ratio ~ $\alpha ~ \alpha_s^{-1}$
 - $\diamond \qquad \text{Include additional deviation } \beta$
- The B-G scaling fit is similar to the previously described signal extraction
- Yield is fit for 1 jet bin, α
 and β fit for all channels
- Agreement between data and MC within 1 or 2 stand. dev.

August 9, 2011

K. Grogg, UW-Madison

Conclusions

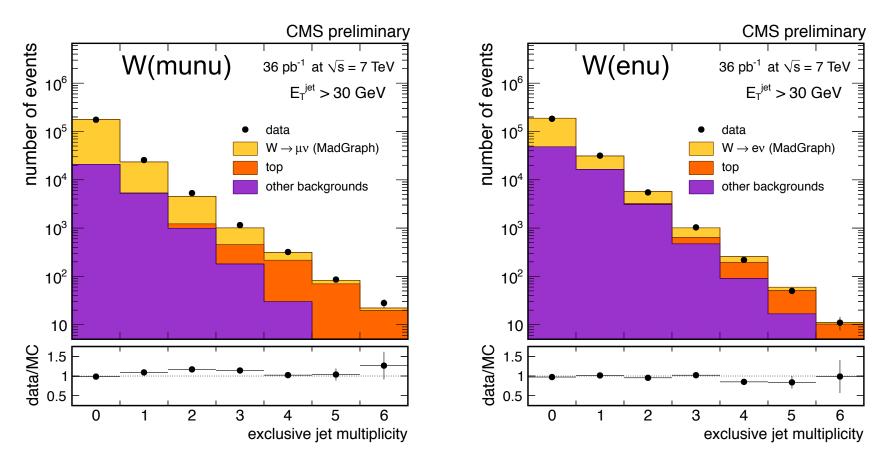
- Presented results for V + jets using 36 pb⁻¹
 - ♦ Jet E_T threshold of 30 GeV
- The analysis makes extensive use of data-driven methods for efficiency and background subtraction
- The results are in agreement with Madgraph Monte Carlo predictions (ME+PS)
 - ♦ Poor agreement with Pythia, as expected
- First direct measurement of Berends-Giele scaling
- + Future plans already collected 1.25 fb⁻¹
 - Absolute cross sections and unfolding of the jet energy spectra
 - ♦ Dijet masses
 - ♦ Comparisons with NLO MCs

Event Selection

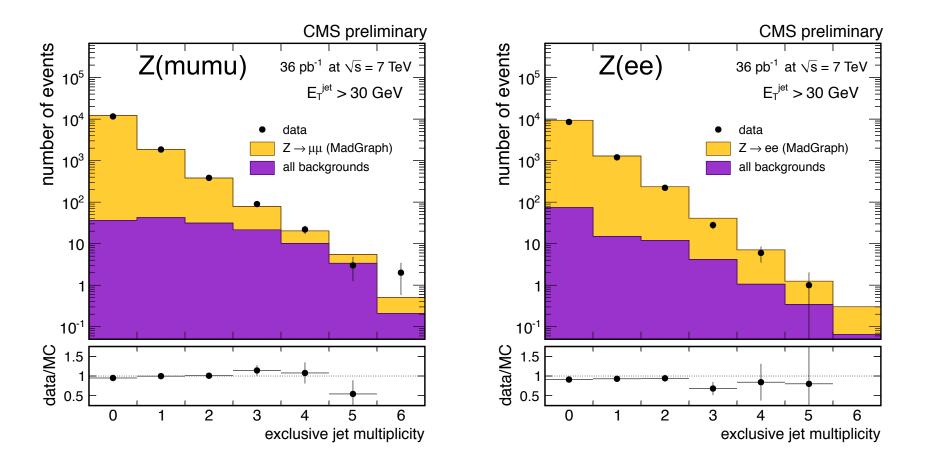
- ✦ Gsf electrons
 - \Rightarrow p_T > 20 GeV
 - ◊ |η| < 2.5, exclu. 1.4442 < |η| < 1.566</p>
 - ♦ WP80 (see table)
 - ★ ID
 - ★ Conversion rejection
 - ★ Isolation
 - $rac{m}{}$ relative to p_T , ΔR cone of 0.3
- No 2nd electron forming Z mass with 1st
 - \diamond ! (60 < m_z < 120)
- + No muons with $p_T > 15$
- + Transverse impact parameter $\delta_{xy} < 0.035$
- HLT object match
- + M_T > 20 GeV
 - ♦ From gsfElectron and PF MET
 - Necessary for data-driven fitting

	WP 80	Barrel Endca					
	Identification						
	σ _{iηiη}	0.01	0.03				
	$\Delta \phi_{in}$	0.03	0.02				
	$\Delta \eta_{in}$	0.004	0.005				
	H/E	0.025	0.025				
	Conversion rejection						
	Missing hits	0 OR					
	Dist	(0.02 AND					
5	∆cot(θ)	0.02)					
	Isolation						
	Track iso	0.09	0.04				
	Ecal iso	0.07	0.05				

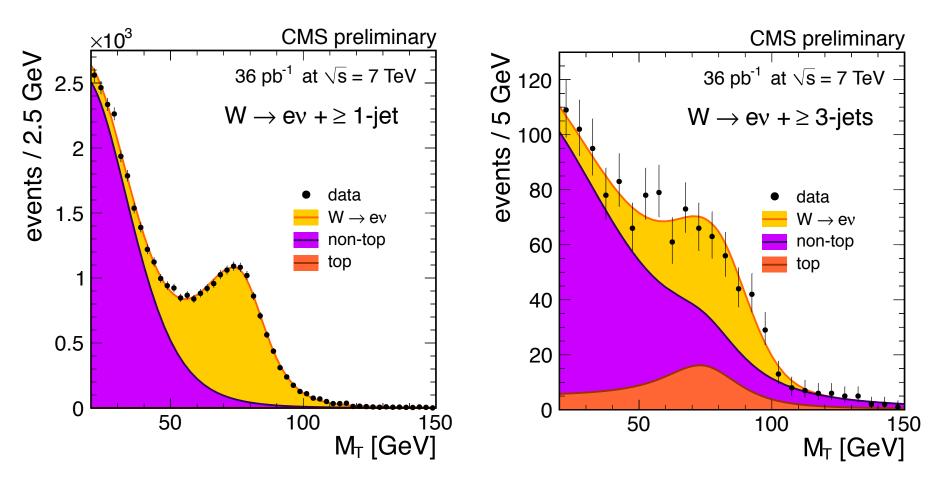
0.10


Hcal iso

0.025

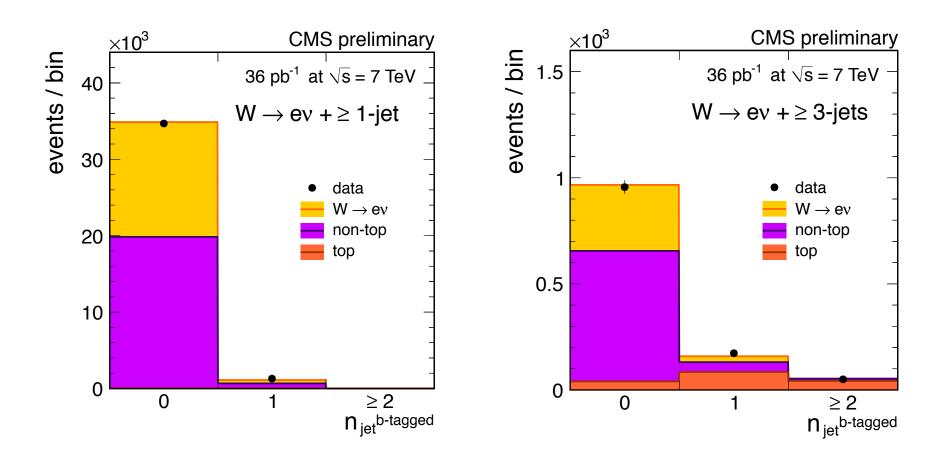

Data – MC comparisons of raw jet rates for the W signal region, $M_T > 50$ GeV, showing good agreement with MADGRAPH + PYTHIA

Data – MC comparisons of raw jet rates for the Z signal region showing good agreement with MADGRAPH + PYTHIA


- Measured using tag and probe on Z+jets sample
 - Invariant mass for pass and fail samples are fit for signal and background
 - ♦ Efficiency found as a function of jet bin
- + W: $\varepsilon_{\text{reconstruction}} \times \varepsilon_{\text{selection}} \times \varepsilon_{\text{trigger}}$
- + Z: $\varepsilon_{\text{reconstruction}} \times \varepsilon_{\text{selection}} \times \varepsilon_{\text{trigger}} \times \varepsilon'_{\text{reconstruction}} \times \varepsilon'_{\text{looser selection}}$
 - \diamond Where ε is for probe $p_T > 20$ GeV, and ε' is for probe $p_T > 10$ GeV
- + Electrons: Uncertainty from choice of fitting line shape
 - BW+CrystalBall vs Double Crujiff (both with exp bkgd)
 - Averaged both fits for the central value
 - ♦ Using jet p_T > 15 GeV for jet counting for adequate statistics
 - Muons: determined as a function of jet bin, p_T , and eta
 - Measured by p_T and eta for 0 and 1 bins, extrapolated to n > 1

$W \rightarrow enu M_T$ Fit Results

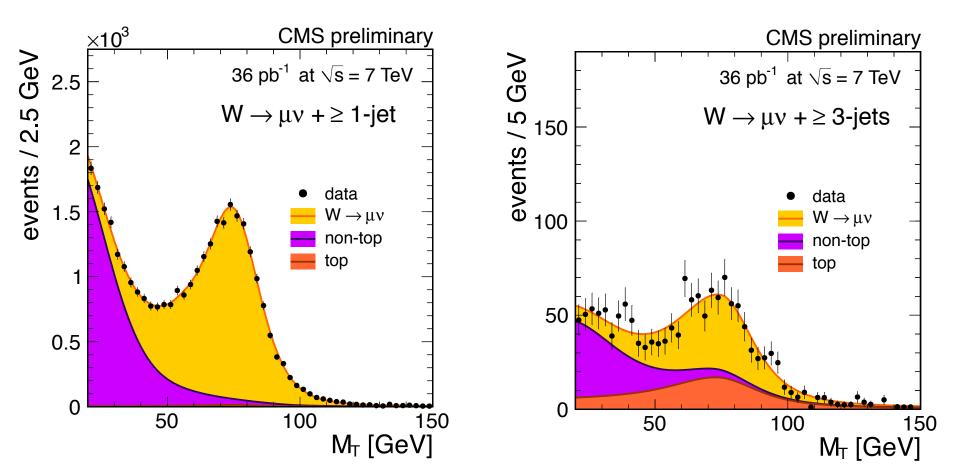
1 jet events



K. Grogg, UW-Madison

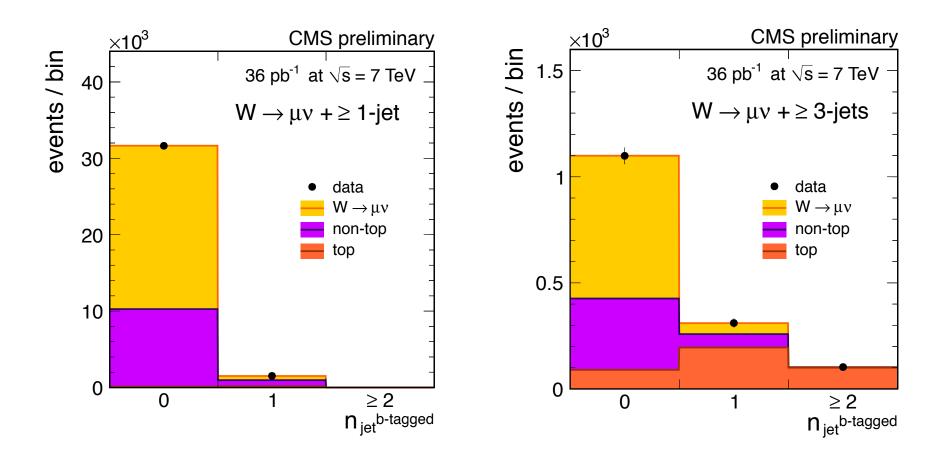
$W \rightarrow enu n_{bjets}$ Fit Results

1 jet events



K. Grogg, UW-Madison

$W \rightarrow munu M_T$ Fit Results


1 jet events

$W \rightarrow munu \ n_{bjets}$ Fit Results

1 jet events

K. Grogg, UW-Madison

Official JetMET recommendations followed using W(mnu)+Jets data and MC samples

- JES uncertainties considered (correlated between jet bins)
 - ♦ Jet Energy Scale
 - ♦ Jet Energy Resolution
 - ♦ MET Resolution
 - ♦ Flavor dependence
 - ♦ PU residual 500MeV offset
 - ♦ CMSSW Release
- Lepton efficiency and signal extraction uncertainty (from varying the constrained parameters) are uncorrelated

Uncertainties on	jet rate	in W –	+ ev eve	ents [%]	
Jet multiplicity	0	1	2	3	≥ 4
Jet counting	∓ 5	± 8	$^{+11}_{-10}$	$^{+14}_{-12}$	+16 -15
Lepton efficiency	± 3	+6 -5	$^{+7}_{-6}$	± 10	$^{+24}_{-12}$
Signal extraction		± 0.1	± 0.4	± 2.9	± 8.5
Total systematics	± 6	± 10	$^{+13}_{-12}$	$^{+18}_{-16}$	+30
Statistical uncertainty	± 0.3	± 1.0	± 2.4	±7.5	±22
Uncertainties on	jet rate	in W –	· µv eve	ents [%]	l
Jet multiplicity	0	1	2	3	$\sim \geq 4$
Jet counting	∓5	_±8	+11 -10	2+14 -12	+16 -15
Lepton efficiency	±3	1±6	±4	±10	±17
Signal extraction		±0.1	±0.4	±2.9	± 8.5
Total systematics	±6	±10	+13	+19 -17	> ±26
Statistical uncertainty	±0.2	±0.8	±2.3	±6.5	±27

- Same JES uncertainties as for W
- Similar efficiency
- No fit systematics
 - ♦ Parameters floated

Jet multiplicity	0	1	2	3	≥ 4
Jet counting	∓5	± 8	$^{+11}_{-10}$	$^{+14}_{-12}$	$^{+16}_{-15}$
Efficiency	± 3	+6	+7 -6	± 10	$^{+24}_{-12}$
Total systematics	±6	± 10	$^{+13}_{-12}$	+18 -16	+30
Statistical uncertainty	± 1.0	± 3.0	± 8.0	± 20	± 47
Uncertainties on je	t rate in	$Z \rightarrow \mu$	$^+\mu^- \text{ev}$	ents [%	6]
Jet multiplicity	0	1	2	3	≥ 4
Jet counting	∓ 5	± 8	$^{+11}_{-10}$	$^{+14}_{-12}$	$^{+16}_{-15}$
Efficiency	± 3	$^{+6}_{-5}$	$^{+7}_{-6}$	± 10	+24
Total systematics	± 6	± 10	$^{+13}_{-12}$	$^{+18}_{-16}$	+30
Statistical uncertainty	± 1.1	± 2.7	± 5.2	± 18	± 35

- Unfolding is performed on exclusive n-jet bins (i.e., n=0, n=1, n=2, n=3, n≥4)
 - ♦ After unfolding the inclusive rates are calculated
- Unfolding is done multiple times for uncertainty calculations:
 - ♦ with statistical errors only
 - ♦ with statistical + uncorrelated systematics
 - ★ Lepton efficiency, fit
 - central values shifted by correlated systematics
 - ★ Jet counting
 - ♦ changing the unfolding method
 - Different tune (Z2 vs D6T), generator (Madgraph vs Pythia), or algorithm (SVD vs Bayes)

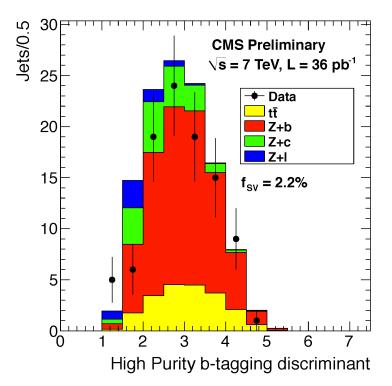
Jet Selection

- AntiK_T5 Particle Flow Jets
 - ♦ L1FastJet, L2+L3+L2L3Residual corrections
 - \Rightarrow p_T > 30 GeV
 - ★ Sensitive to the matrix element
 - ★ Smaller pile-up correction needed
 - ♦ |eta| < 2.4</p>
 - ♦ Remove if selected electron is within $\Delta R < 0.3$
 - Muons are excluded from jet list before clustering

PFlow Jet ID variable	Selection
chargedEmEnergyFraction	< 0.99
neutralHadronEnergyFraction	< 0.99
neutralEmEnergyFraction	< 0.99
chargedHadronEnergyFraction	> 0
chargedMultiplicity	> 0

- Jet energy uncertainty:
 - Add in quadrature: JEC
 + PU + Flavor
 - ★ JEC dependent on eta and p_T (~3%)
 - ★ PU dependent on jet p_T (~1.2 % for 30 GeV jet)
 - ★ Flavor set to 2-3%

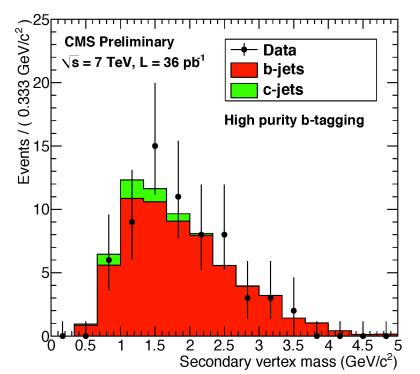
- Use data-driven "Tag-and-probe" method as part of the efficiency calculation
 - $\Rightarrow \quad \text{Start from } Z/\gamma^* + \text{ jets data sample (very little background)}$
 - ★ Two electrons forming an invariant mass, $60 < m_{ee} < 120$ GeV
 - One electron, the "tag", passes full selection (reduces background)
 - Second "probe" electron is divided into two samples
 - ★ Passing the desired requirement
 - $\ensuremath{\varkappa}$ $\,$ i.e., reconstruction, WP80, or HLT $\,$
 - ★ Failing the same requirement
 - Fits are performed on the passing and failing samples to extract the number of Z electrons from the remaining background
 - ♦ Efficiency is the number of probes passing the current requirement relative to the total number of probes, e.g., $ε_{trigger} = N_{trig} / N_{WP80}$
 - ★ $ε_{T\&P} = ε_{reconstruction} × ε_{selection} × ε_{trigger}$


See T&P fits

CMS-PAS-EWK-10-015

- + Z+b benchmark for high tan β MSSM Higgs searches
- + H+b NLO prediction has large uncertainties
 - ♦ 30% scheme dependence (variable vs fixed flavor schemes)
 - \diamond Z+b data should help to clarify
- Select Z+≥1 jet events
 - \diamond Jet ET > 25 GeV; separated from lepton by ΔR >0.5
 - ♦ Require secondary vertex
 - \Rightarrow M_T < 40 GeV to reject top
 - 29 dieletron and 36 dimuon events after selection
- B-tagging descriminant variable built from flight distance between PV and SV
 - ♦ SSVHE: high efficiency selection with ≥2 tracks attached to SV
 - ♦ SSVHP: high purity selection with ≥3 tracks attached to SV

Z+b/Z+jets Ratio



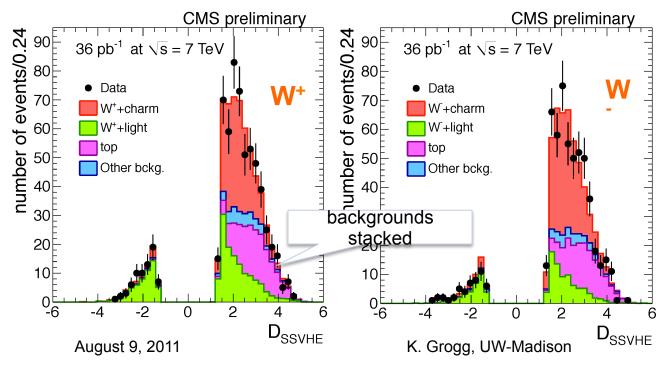
CMS-PAS-EWK-10-015

- Determine Z+b purity in selected sample from binned ML fit:
 - of SV mass or B-tag discriminant shape ∻
 - MC templates for b, c, ligh-jet components ∻

Purity (%)	SSVHE	SSVHP
data	55±9	88±11
MC	57±3	82±4

- → Results compatible with Madgraph (scaled to NLO) & MCFM
- → Limited statistics: scheme dependence cannot be resolved yet

	1	
Sample	$rac{pp ightarrow ee+b+X}{pp ightarrow ee+j+X}$ (%) $\mathrm{p}_T^e>25\mathrm{GeV}$, $ \eta^e <2.5$	$rac{pp ightarrow\mu\mu+b+X}{pp ightarrow\mu\mu+j+X}$ (%) $\mathrm{p}_T^\mu > 20$ GeV, $ \eta^\mu < 2.1$
Data SSVHE	$4.3 \pm 0.6(stat) \pm 1.1(syst)$	$5.1 \pm 0.6(stat) \pm 1.3(syst)$
Data SSVHP	$5.4 \pm 1.0(stat) \pm 1.2(syst)$	$4.6 \pm 0.8(stat) \pm 1.1(syst)$
MADGRAPH	$5.1 \pm 0.2(stat) \pm 0.2(syst) \pm 0.6(theory)$	$5.3 \pm 0.1(stat) \pm 0.2(syst) \pm 0.6(theory)$
MCFM	4.3 ± 0.5 (theory)	4.7 ± 0.5 (theory)
August 9, 2011	K. Grogg, UW-Madison	



Study of W+c with W \rightarrow µv

CMS-PAS-EWK-11-013

- + Process dominated by sbar $g \to W^+$ cbar and $sg \to W^-c$
- + Probes s and sbar content of proton
- + Select W+≥1 jet events in muon channel
 - \diamond M_T > 50 GeV to reject QCD background
 - \diamond Jet E_T > 20 GeV
 - ↔ Require SV with ≥2 associated tracks and significantly displaced from PV
- + B-tagging descriminant variable D_{SSVHE} built from flight distance between PV and SV

ML fit of signal, top, W +light quarks, DY components to observed D_{SSVHE} Negative values of D_{SSVHE} due to detector resolution effects and well suited to

constrain light quark

component

CMS-PAS-EWK-11-013

- + For leading jet with $E_T > 20 \text{GeV}$ and $|\eta| < 2.1$: $R_c^{\pm} \equiv \sigma(W^+ \bar{c}) / \sigma(W^- c)$ $R_c^{\pm} = 0.92 \pm 0.19 \text{ (stat.)} \pm 0.04 \text{ (syst.)}$
 - Leading source of sys error: PDf uncertainties, pile-up effect and background templates

 $R_c \equiv \sigma(W+c) / \sigma(W+jets)$

- $R_c = 0.143 \pm 0.015 (stat.) \pm 0.024 (syst.)$
- ♦ Leading source of sys error: Tracking resolution

Results in agreement with NLO predictions