

Study of the $B_s \rightarrow J/\psi \phi$ Decay in pp Collisions at $\sqrt{7}$ TeV

DPF Meeting 2011, August 9 – August 13 2011 Brown University (Providence, RI)

Giordano Cerizza
University of Tennessee
on behalf of the CMS collaboration

b-quark Production at LHC

- Test of perturbative QCD and Monte Carlo models
- Understand Standard Model b-quark background for other processes (i.e. Higgs search)
- Build confidence in the CMS experiment
- Excellent tracking and vertexing
- Muon identification
- Flexible trigger system

For the decay $B_s \rightarrow J/\psi \phi$:

- Measurement of d $\sigma(pp \rightarrow B_s X)xBF(B_s \rightarrow J/\psi \phi)/dx$ (x=p_T,y) in the range 8< p_T^{Bs}<50 GeV/c and 0<|y^{Bs}|< 2.4

$$y^B = \frac{1}{2} \ln \left(\frac{E^B + p_z^B}{E^B - p_z^B} \right)$$

- Measurement of $\Delta\Gamma$ and CP-violating weak phase ϕ_s

Angular analysis

 $B_s \rightarrow J/\psi \phi$ is not a CP eigenstate \longrightarrow Partial wave analysis is required to split

CP-even and CP-odd components of the

decay amplitude → transversity basis

Differential decay rate described by:

$$\frac{d^4\Gamma}{d(\cos\theta)d\varphi\ d(\cos\psi)dt} = f(A_0,A_\parallel,A_\perp,\Gamma_L,\Gamma_H,\varphi_s,\delta_1,\delta_2)$$
Amplitude strengths Decay widths Weak phase

The analysis for the extraction of $\Delta\Gamma$ is ongoing!

Run/Event: 139364 / 20750462

CMS Experiment at LHC, CERN Data recorded: Sun Jul 4 01:33:41 2010 $B_s \rightarrow J/\psi \phi$ candidate event

- Silicon Tracker detector: charged tracks as well as precise reconstruction of primary and secondary vertices DPF 2011 - Giordano Cerizza

Muon Reconstruction

- Four "stations" for both barrel and endcaps
- Large rapidity coverage:
 - $|\eta| < 2.4$
 - CMS covers unique p_T-η range complementary w.r.t. LHCb

- Excellent muon momentum resolution:
 - Matching between muon chambers and the silicon tracker
 - Resolution as function of $\boldsymbol{\eta}$ because of the increasing material traversed

Muon Efficiency

Muon efficiency from data → the "Tag-and-Probe" method

- Require one well-identified muon in the event ("tag")
- Another candidate muon, with looser criteria L, is paired to it ("probe")
- Compare resonance yields for all tag-probe pairs and for pairs where the probes pass a given selection S \rightarrow determine $\varepsilon(S \mid L)$

Strategy Outline

Measurement of the differential cross section in bins of Δx (with $\Delta x = p_T, y$)

$$\frac{d\sigma\left(pp \to B_s^0 X\right) \times BF(B_s^0 \to J/\psi\phi)}{dx} = \frac{n_{sig}}{2 \cdot \varepsilon \cdot B \cdot L \cdot \Delta x}$$

with $\sigma_{\text{BF}}/\text{BF} \sim 30\%$

- Reconstruction and extraction of the signal yield (n_{sig}) :
 - Optimized selection criteria requirements for event variables
 - Study of potential B background sources from MC
 - Expected sources of background: prompt J/ ψ and non-prompt B background
 - 2D Maximum Likelihood fit to J/ ψ ϕ invariant mass and proper decay length
- Efficiency determination (ϵ):
 - Muon reconstruction efficiency data driven
 - B_s/ϕ reconstruction efficiency based on signal MC sample
 - Acceptance based on signal MC sample

Reconstruction and B_s Selection

- Dimuon trigger with no threshold on p_T
- High quality muons combined to form J/ ψ resonance
- Tight requirements on charged tracks (# hits, χ^2) with kaon mass hypothesis
- Kinematic fit to di-muon pairs and two charged tracks (di-muon pairs constrained to J/ ψ mass value)

- Further requirements on vertex fit probability, charged tracks kinematics, K+di-kaon invariant mass

Fit Technique

- Extract the signal yield with a 2D unbinned maximum likelihood fit to $B_{\rm s}$ mass and proper decay length

$$L = \exp\left(-\sum_{1}^{3} n_{i}\right) \prod_{j} \left[\sum_{1}^{3} n_{i} P_{i}(M_{B}; \vec{\alpha}_{i}) P_{i}(ct; \vec{\beta}_{i})\right]$$

- Three components in the fit: signal, non-prompt J/ ψ , and prompt J/ ψ
- PDFs extracted with data-driven method (except for signal B_s mass PDF from MC)
- In the final fit all the parameters (except for the B_s mass) are free to float

Category	J/ψ φ Inv. Mass	ct
Signal	$G_{core} + G_{tail}$	$R \otimes e^{-ct/\lambda}$
B background	2 st Poly	$R \otimes (fe^{-ct/\lambda 1} - (1-f)e^{-ct/\lambda 2})$
Prompt J/ψ bkg	1 st Poly	R

- We choose four p_T and four |y| bins to have equal samples in each, keeping a statistical uncertainty $^{\sim}10~\%$

Fit Results

Performing 2D Maximum Likelihood fit:

 $c\tau = 478 \pm 26 \mu m$

(fit with single exponential)

Accepted by PRD-RC http://arxiv.org/abs/1106.4048

Signal yield extracted in the range

- $-8 < p_T < 50 \text{ GeV/c}$
- -|y| < 2.4

$$N_{sig} = 549 \pm 32$$

Legend:

- Signal ----
- B background · ·
- Prompt J/ ψ

Systematics

Source	%
Muon Reconstruction Efficiency	3-5
Hadron Tracking Efficiency	7.8
Reconstruction Efficiency	2-3
Misalignment	2-4
p _T /y Spectrum	1-3
Probability Density Function	2-4
Uncorrelated Systematic Errors	10-11
Branching Fractions	1.4
Luminosity	4
Correlated Systematic Errors	4.2
Total Systematic Error	11-12

Differential Cross Section dσ/dp_T

(Accepted by PRD-RC http://arxiv.org/abs/1106.4048)

Differential Cross Section do/dy

(Accepted by PRD-RC http://arxiv.org/abs/1106.4048)

Differential Cross Section Results

- Integrating the differential cross section over $p_{\scriptscriptstyle T}$ bins:

$$\sigma(pp \rightarrow B_s X) \times BF(B_s \rightarrow J/\psi \phi) =$$

(6.9 ± 0.6_(stat) ± 0.5_(syst) ± 0.3_(lumi)) nb

which is in agreement with the MC@NLO predictions:

MC@NLO:
$$(4.57^{+1.93}_{-1.71(scale)} \pm 1.37_{(BF)})$$
 nb

Results consistent with the other measured
 B-meson production cross sections

Measurement of the B+ Production Cross Section in pp Collisions at sqrt(s) = 7 TeV (PRL 106, 112001 (2011)) Measurement of the B0 Production Cross Section in pp Collisions at sqrt(s) = 7 TeV (PRL 106, 252001 (2011))

My Evaluation of BF($B_s \rightarrow J/\psi \phi$)

- For comparison we use HFAG/PDG2011 values for the fragmentation fractions and the BF measured by CDF [PRD 54, 6596 (1996)] published in PDF2011
- The BF is calculated from B+ \rightarrow J/ ψ K+ and B⁰ \rightarrow J/ ψ K⁰_s cross sections:

$$BF(B_s^0 \to J/\psi \phi) = \underbrace{\frac{\sigma(pp \to B_S^0 \to J/\psi \phi)}{\sigma(pp \to B^{+,0}X)}} \underbrace{\frac{f_{u,d}}{f_s}} \underbrace{\frac{f_{kin}^{B^{+,0}}}{f_{kin}^{B_s}}}$$
 CMS cross-section measurements

(PRL 106, 112001 & 252001, http://arxiv.org/abs/1106.4048)

Fragmentation fractions from HFAG/PDG2011

Kinematic correction ratio to extrapolate the full kinematic range from the limited p_T/η range (NLO generated events)

Fragmentation fractions from LEP+Tevatron

•
$$\Gamma(\bar{b} \to B_s) = (11.0 \pm 1.2)\%$$

• $\Gamma(\bar{b} \to B^+) = (40.3 \pm 1.1)\%$
• $\Gamma(\bar{b} \to B^0) = (40.3 \pm 1.1)\%$
• $\Gamma(\bar{b} \to B^0) = (40.3 \pm 1.1)\%$
• $f_{u,d} = \frac{\Gamma(B_s)}{\Gamma(B^{+,0})} = (27.2 \pm 3.1)\%$

$$\frac{f_s}{f_{u,d}} = \frac{\Gamma(B_s)}{\Gamma(B^{+,0})} = (27.2 \pm 3.1) \%$$

$$\bullet \Gamma(\bar{b} \to B_s) = (11.1 \pm 1.4)\%$$

$$\bullet \Gamma(\bar{b} \to B_s) = (33.9 \pm 3.1)\%$$

$$\bullet \Gamma(\bar{b} \to B^+) = (33.9 \pm 3.1)\%$$

$$\bullet \Gamma(\bar{b} \to B^0) = (33.9 \pm 3.1)\%$$

$$f_{u,d} = \frac{\Gamma(B_s)}{\Gamma(B^{+,0})} = (32.7 \pm 5.1) \%$$

Kinematic Correction Ratio

- Good agreement between NLO theoretical predictions and data for all the three B-meson cross sections
 - \rightarrow We use the central model (CTEQ6M, $Q_R = Q_F = 1$, and $m_b = 4.75$ GeV/c²) to predict the full kinematic range in p_T and y
- Varying the renormalization and factorization by factors of two and m_b from 4.5-5.0 GeV/c², ratios change less than 5%

Calculation

Source	ΒF ^{Bs→J/ψ φ} _{B+→J/ψ K+}	BF ^{Bs→J/ψφ} _{B0→J/ψ Ks}
	Experimental Uncertainties	
Cross section	15.8%	16.5%
NLO spectrum	4.6%	4.3%
	PDG Uncertainties	
Branching fractions	3.5%	3.8%
Fragmentation fractions	11.2%	11.2%

The results obtained independently from the B⁺ and B⁰ analysis agree within one standard deviation. The error-weighted average is:

BF(B_s
$$\rightarrow$$
J/ ψ ϕ)= (1.8 ± 0.2_(exp) ± 0.2_(PDG)) x 10⁻³
BF(B_s \rightarrow J/ ψ ϕ)= (1.4 ± 0.4_(exp) ± 0.2_(PDG)) x 10⁻³ (PDG2011)

Using the fragmentation fractions from Tevatron, only:

BF =
$$(1.5 \pm 0.2_{(exp)}) \times 10^{-3}$$

BF= $(1.2 \pm 0.3_{(exp)}) \times 10^{-3}$ (PDG2011)

Summary

- We presented the first measurement of $\sigma(pp \rightarrow B_s X)xBF(B_s \rightarrow J/\psi\phi)$ at 7 TeV using the 2010 data in bins of p_T and rapidity y
- We find a value of $(6.9 \pm 0.6 \pm 0.5 \pm 0.3)$ nb that is in agreement with MC@NLO within the uncertainties (accepted by PRD-RC http://arxiv.org/abs/1106.4048)
- The BF(B_s \rightarrow J/ ψ ϕ) calculated via the CMS exclusive-B cross section measurements is in agreement with the PDG value
- We are working towards a lifetime difference measurement of the $B_{\mbox{\tiny S}}$ mesons in 2011