Accelerator Test Facility at BNL

Vitaly Yakimenko

ATF Organization Chart

Operations statistics:

- ATF systems were operated for a total of 206 run-days during last twelve months:
 - 119 days of experiments that require electron beam only,
 - 67 days of accelerator development and training,
 - 30 days for experiments that exclusively use the CO_2 laser beam,
 - 50 days of CO_2 laser development and training
 - 18 days for experiments that require the interaction of electron and CO_2 laser beams.
- 34 users from 13 institutions have been setting up and conducting their experiments at the ATF.

1.6 Cell RF gun / Emittance

office of high energy physics

Path towards multi-TW femto-sec CO₂ laser

CO2 upgrade path

Pa: 2 x 5 J	st: 0.5 TW 5 ps 1 MeV	Pres 5 ps 5 J	sent: 1 TW 35 MeV	Near 2 ps 10 J	future: 5 25 MeV	TW Fut 0.5 p 25 J	ure: 50 T 250 MeV
			Apr.2009	Feb.2010	Nov.2010	Dec.2011	???
	Energy	[J]	5	5	5	10 ^(IV)	25 ^(V)
	Duration	[ps]	2 x 5 ^(I)	$5^{(II)}$	5	2 ^(IV)	0.5 ^(V)
	Power	[TW]	0.5	1	1	5	50
	a ₀		1.2	1.7	2.2 ^(III)	5	16
	E _p	[MeV]	1.5			25	250

- I. laser pulse was split into two due to modulated amplification spectrum
- II. isotopic mixture was used to demonstrate single pulse amplification
- III. improved laser focusing is expected to increase laser intensity
- IV. Ti:Sf seed laser is purchased (Sep.2010) to shorten CO2 seed to 1 ps. Shorter seed would allow for better laser energy extraction.
- V. Additional amplification stage and/or laser pulse plasma chirping/ compression need to be developed to reach this stage (not funded)

ATF experimental program summary

- High Gradient / X band option at ATF •
 - 3fs resolution longitudinal diagnostics
 - Energy spread silencer
 - High gradient experiments with high brightness e beam
 - Testing high gradient S-band structures
- Plasma WFA
 - Bunch train (completed)
 - High transformer ratio measurement (shaped train and triangular bunch)
 - Efficiency optimization
 - Weibel instability studies
 - Holographic characterization of wake fields from two bunch and "train"
- Dielectric WFA
 - Bunch train narrow band THz generation (completed)
 - High transformer ratio measurement (shaped train and triangular bunch)

Medium range between ANL and FACET beams

ATF experimental program summary

- CO2 laser development (5TW near term, 10-20TW later)
 - Short pulse seeding using new Ti: Sapphire laser system
 - Stretched pulse amplification
 - Controlled dual pulse structure (for Ion beam generation)
 - Recirculation cavity
- Laser Generated Ion beams
 - Studies of monoenergetic ion beams generation with controlled dual pulse structure
 - Ion beam energy encrease to 5, 10 and 20MeV.
 - Experimental program with generated beams
- Compton back scattering generated X ray beams
 - High intensity/brightness single shot experiments
 - Fast diffraction pump probe experiment
 - Multibunch interaction with CO2 laser for ILC/CLIC polarized et source
 - Multibunch interaction with UV laser for DOD tests

Electron beam usage

Multi-bunch Plasma Wake Field Experiment

Bunch Train generated with the mask

Measured uniform train of drive bunches excites high amplitude wake field

Currently we use setup with 5 masks to accommodate needs of 4 experimental groups studying:

- 1. PWFA (USC)
- 2. DWFA (Euclid and UCLA)
- 3. DWF THz generation (UCLA)
- 4. CSR shielding (CAD BNL)

Shaped bunch train for efficiency and high transformer ratio studies

PWFA: ENERGY CHANGE

Transformer ratio with triangular bunch

office of high energy physics

Preliminary analysis

Compton X ray Source

- Compton based 6KeV x ray source with a record number of photons (PRE 1998)
- Observation of the second harmonic (PRL 2001)
- Single shot phase contrast imaging (APL 2010)
- Single shot Diffraction (in preparation)
- 100fs X ray camera
- Recirculation cavity to increase average flux
- Gamma source for polarized positron source

Coherent Synchrotron Radiation Suppression

Coherent Synchrotron Radiation Studies

ATF move

Goals:

office of high energy physics

- Address "space issue" at ATF
- Shielded space for • medical experiments with ion beams
- Improve efficiency • with number of separate experimental halls
- Allow for future grows

Conclusion

- The R&D program at ATF is very diverse
- Well characterized and controlled high brightness electron beam and synchronized TW picosecond CO2 laser are main capabilities
- Operations at ATF are organized as a user facility:
 - Regular User meeting and PAC review of proposals
 - Schedule
 - Discussion of planned upgrades with users
- The main thrust towards long range research that is not part of the construction projects

