

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

KATRIN: an experiment to determine the neutrino mass

Florian M. Fränkle for the KATRIN Collaboration

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

outline

- introduction
- experimental setup & status
- spectrometer background processes
- summary & outlook

tritium β-decay

Fermi theory of β -decay:

$$\frac{dN}{dE} = C \cdot F(E,Z) \cdot p(E+m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m_v^2}$$

observable:

$$m_{\nu_e}^2 = \sum_{i=1}^3 |U_{ei}|^2 m_i^2$$

tritium as β emitter:

- high specific activity (half-life: 12.3 years)
- low endpoint energy E₀(18.57 keV)
- super-allowed

→ model independent measurement of neutrino mass

KATRIN sensitivity

- KATRIN sensitivity 200 meV/ c^2 , discovery potential (5 σ) after 3 years: 350 meV/ c^2
- low background level (10 mHz) essential

KATRIN experiment

(**KA**rlsruhe **TRI**tium **N**eutrino experiment, location: Karlsruhe Institute of Technology) sensitivity on electron anti-neutrino mass: **200 meV/c²**

adiabatic guiding of electrons on meV level

tritium source

status:

- WGTS demonstrator measurements at TLK
- demonstrator temperature stability10 times better than specified
- construction 2012
- commissioning 2013

TLK provides complex infrastructure to handle tritium

purpose: delivery of $10^{11} \beta$ -decay electrons per second

requirements:

- stability of T_2 density profile of 10^{-3} (function of: injection rate, purity, beamtube temperature T_B , pump rate)
- T_B homogeneity ±30 mK
- T_B stability ±30 mK h⁻¹

properties:

- beam tube: 10m length, 90mm diameter, absolute temperature 30 K
- windowless gaseous tritium source (WGTS)
- tritium loop: 40g T₂ / day

WGTS demonstrator

tritium reduction

Differential **P**umping **S**ection:

purpose: reduce T₂ partial pressure by 10⁵

- differential pumping of T₂ (TMPs)
- magnetic guiding of β-electrons (5.6T)
- removal of positive ions (dipole)

status:

- acceptance tests completed
- test of physical properties (reduction factor, ion suppression,...) ongoing

Cryogenic Pumping Section:

purpose: reduce T₂ partial pressure by 10⁷

- cryosorption of T₂ on Argon frost
- concept successfully tested (TRAP)

- presently being manufactured
- delivery in 2011
- commissioning 2012

pre-spectrometer

purpose:

- reduce β-decay electron flux by 10⁶
- reduction of T₂ flow (getter pump)
- MAC-F filter
- energy resolution 70eV @ 18.4 keV
- pressure 10⁻¹¹ mbar

prototype for main spectrometer:

- vacuum concept successfully tested (p = 10⁻¹¹ mbar, routinely)
- active HV stabilization tested
- test of new electromagnetic design
- background suppression
- optimization of electrode system

pre-spectrometer test setup

1 electron gun

3 vessel

2 magnets (4.5 T)

4 detector

- test measurements ended 04/21/2011
- relocation of pre-spectrometer to main spectrometer hall ongoing
- → pre-spectrometer test setup yielded important input for the design of the main spectrometer.

main spectrometer

purpose: energy analysis

requirements:

- energy resolution 0.93 eV @ 18.6 keV
- pressure < 10⁻¹¹ mbar
- background event rate < 10 mHz</p>
- stable HV system (1ppm @ -18.6 kV)

properties:

- MAC-E filter (integrating high pass filter)
- volume: 1240 m³, surface: 689,6 m²
- inner electrode system
- variable voltage to scan E₀ region

background rejection:

- first vacuum test without getter pump successful (10⁻¹⁰ mbar)!
- mounting of inner electrode system almost finished
- electro-magnetic test measurements 2012

inside the main spectrometer (05/03/2011)

detector system

purpose: counting transmitted β -decay electrons

requirements:

- intrinsic background rate < 1 mHz in Rol</p>
- electron energy range 5 to 100 keV
- energy resolution < 1 keV</p>

properties:

- segmented monolithic Silicon PIN Diode
- 148 pixels, area ~ 50 mm² each
- post acceleration (up to 30 kV)
- muon veto

- first commissioning phase at UW finished
- mounting of the system at KIT right now
- detector will be used for the commissioning phase of the main spectrometer in 2012

MAC-E filter

Magnetic Adiabatic Collimation combined with an Electrostatic Filter

Magnetic moment:

$$\mu = \frac{E_t}{B} = const$$

Energy resolution:

$$\Delta E = \frac{B_A}{B_{max}} E_t$$

- combines high luminosity with high energy resolution
- intrinsic protection against background via magnetic shielding

pre-spectrometer background

- time dependent background (average rate 23.3 \pm 0.4 mHz, aim < 10 mHz)
- intervals of elevated rate show ring pattern on detector

radon background model

- pre-spectrometer getter pump (SAES St707 NEG, 270 m²) emanates ²¹⁹Rn
- Rn penetrates into the flux tube where it decays

- electrons released in processes accompanying the Rn α -decay can be magnetically trapped inside the spectrometer
- depending on their initial energy, the trapped electrons can produce thousands of secondary electrons via ionization of residual gas molecules
- → Estimated Rn induced background rate at main spectrometer: 300 mHz

mitigation of Rn background

- main spectrometer without getter pump:
 increase of background due to T₂ decays and pressure dependent processes
- LN2 cooled baffle between getter pump and spectrometer: tests at pre-spectrometer successful (about 100 % reduction), baffles will be installed at main spectrometer
- electric dipole field:
 not effective against high energy (order of 10 keV) trapped electrons
- electron cyclotron resonance (ECR) pulse:
 proof of principle at pre-spectrometer successful (reduction up to factor 6)
- magnetic pulse (to be tested)

summary & outlook

summary:

- KATRIN will measure the mass of the electron anti-neutrino, sensitivity: 200 meV/c²
- installation of main spectrometer electrode system almost finished
- Rn decay in the spectrometer volume is a major background source, different technologies to mitigate Rn induced background were tested
- detector system (major US contribution) has been shipped to KIT and is being installed

outlook:

- commissioning and test measurements at the main spectrometer start in 2012
- commissioning of the complete KATRIN beam line will start 2013/2014
- start of neutrino mass measurements 2014

KATRIN collaboration

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL