Interpretations of SUSY Searches in ATLAS with Simplified Models

2011 Meeting of the Division of Particles and Fields of the American Physical Society

August 9-13, 2011

Hideki Okawa on behalf of the ATLAS Collaboration

University of California, Irvine

Where We Are

- ATLAS recorded ~2 fb⁻¹ by early
 August (starting to have results with ~1 fb⁻¹).
- We are truly entering the TeV-scale
- We want to be model-independent not to miss signals being too driven by specific SUSY models
- Simplified model approach is one of the most promising (quasi-)model independent strategies for new physics searches
- Widely gaining interests in the experimental/theoretical community (lhcnewphysics.org)

Simplified Models

- What are "Simplified Models"?
 - Effective models with minimal particle contents
 - Searches in the context of "particles"
 - Model-independent results (upper limits on σ×BR) : Interface to specific models; can also be extended to non-SUSY models
- Important additional features
 - Can scan the whole sparticle mass plane (unlike mSUGRA)
 - Disentangle assumptions on various couplings & branching ratios (complementary to pMSSM approach)

 σ_G

Masses

 M_G

 M_T

 M_{LSP}

OT

J.Alwall et al., Phys. Rev. D 79,

075020, 38 (2009)

Hideki Okawa

Simplified Models in ATLAS

- 2 4 mass parameters : subsets of gluino, squark, wino, slepton LSP masses
- Sparticles not relevant for the event topologies considered to be heavy (> a few TeV)
- Branching ratios can be free parameters, assume 1 or other realistic values

Simplified model interpretations in ATLAS

• No-lepton channel (1.04 fb⁻¹)

this presentation

- SS 2-lepton channel (35 pb⁻¹) -
- b-jet + MET channel (0.83 fb⁻¹; see B. Butler's talk)

No-Lepton Search

- Golden channel for SUSY search → Has the largest coverage over possible R-parity conserving pMSSM phase space (J. Conley et al., Supersymmetry Without Prejudice at the 7 TeV LHC, arXiv:1103.1697 (2011))
- Here, 3 diagrams considered, where gluinos/squarks directly decay down to the lightest supersymmetric particle (LSP)

No-Lepton Ev. Selections

- Signature with large E_T^{miss} + multiple high-p_T jets
- Using E^{™iss}+jet trigger → (E^{™iss} 45 GeV, jet p[™] 75 GeV at raw EM scale)
- 5 signal regions covering → gluino/squark mass plane for various high-p_T jet multiplicities
- Additional cuts for QCD BG suppression

~				
Signal Region	≥ 2 jets	\geq 3 jets	\geq 4 jets	High mass
$E_{ m T}^{ m miss}$	> 130	> 130	> 130	> 130
Leading jet $p_{\rm T}$	> 130	> 130	> 130	> 130
Second jet $p_{\rm T}$	> 40	> 40	> 40	> 80
Third jet $p_{\rm T}$	_	> 40	> 40	> 80
Fourth jet $p_{\rm T}$	_	_	> 40	> 80
$\Delta \phi$ (jet, $E_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$	> 0.3	> 0.25	> 0.25	> 0.2
$m_{\rm eff}$ [GeV]	> 1000	> 1000	> 500/1000	> 1100

 $m_{eff} = \sum_{i=1}^{n} |p_T^{jet(i)}| + E_T^{miss}$

 Main BG: W/Z+jets, top, QCD multijets. Estimated with (quasi-)datadriven methods using various control regions (CR's)

$$N(SR, est, proc) = N(CR, obs, proc) \times \frac{N(SR, raw, proc)}{N(CR, raw, proc)}$$

- MC (generator, PDF, scale;
- \sim 25% effect)

Z+jets BG

- $Z(\rightarrow v\bar{v})$ +jets is the dominant component in Z+jets BG
- 2 CR's: γ+jets & Z(→e+e⁻, μ+μ⁻)+jets from single photon or lepton triggered events; bosons are replaced with E_T^{miss}
- Transfer functions: p_T -dependent cross section ratio between Z/ γ etc. for γ +jets; acceptance effects, etc. for Z(\rightarrow e⁺e⁻, μ ⁺ μ ⁻)+jets

CR-specific systematics

- Photon/lepton trigger efficiency, reconstruction efficiency, energy scale and resolution
- Photon acceptance & BG
- MC statistics

7

W+jets & Top BG

- 1 lepton + E_T^{miss} + jets CR's with 30<M_T<100 GeV are used for W+jets/Top
- CR's were further separated to W+jets & Top-dominant regions using btagging
- Lepton is replaced as "jet," since no-lepton BG dominantly comes from hadronic τ's

QCD BG

- Fake E_T^{miss} originates in multijet events from jet mismeasurement and heavy flavors
- Low E_T^{miss} region used for CR. Jets are smeared using response function measured from data (systematics arise from modeling of non-Gaussian tail)

- Limits on the simplified models with LSP mass at 0. Combined from 5 channels
- $m \le 1.075$ TeV excluded when $m_{gluino} = m_{squark}$ at 95% confidence level $m_{gluino} \le 800$ GeV, $m_{squark} \le 850$ GeV are excluded respectively
- Exclusion limit is not sensitive to the LSP mass up to ~ 200 GeV

Hideki Okawa

SS 2-Lepton Search

- Very small Standard Model BG → clear channel for SUSY search (M. Barnett et al., Phys. Lett. B 315, 349)
- Simplified models with same-sign same-flavor squark production considered in particular (H.Okawa, presentation at Characterization of new physics at the LHC II, Nov. 2011; ATLAS Collaboration, ATLAS Note, ATLAS-CONF-2011-091)

Masses (3 parameters): squark, χ_1^{\pm}/χ_2^0 , LSP (m_{$\chi1^{\pm}$} = m_{$\chi20$} assumed) Branching ratios: BR(sq \rightarrow q χ_1^{\pm}), BR(sq \rightarrow q χ_2^0), BR($\chi_1^{\pm}\rightarrow$ Iv χ_1^0), BR($\chi_2^0\rightarrow$ I⁺I⁻ χ_1^0)

BG in SS 2-Lepton

Also see T. Sarangi's talk

Same Sign, $E_T^{miss} > 100 \text{ GeV}$						
	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$			
Data	0	0	0			
Fakes	0.12 ± 0.13	0.030 ± 0.026	0.014 ± 0.010			
Di-bosons	0.015 ± 0.005	0.035 ± 0.012	0.021 ± 0.009			
Charge-flip	0.019 ± 0.008	0.026 ± 0.011	-			
Cosmics	-	$0^{+1.17}_{-0}$	-			
Total	0.15 ± 0.13	$0.09\stackrel{+1.17}{_{-0.03}}$	0.04 ± 0.01			

- Fake BG: 2 fake leptons from bb, cc, multijet. 1 real + 1 fake lepton from W/Z+jets & Top. Estimated from data-driven method using loose & tight lepton selection.
 - Diboson : WW, WZ, ZZ. Estimated purely from MC.
- Charge flip : electron undergoing brems/pair creation ("trident events") & reconstructed with wrong sign (other softer electrons are not identified). Mostly tt.
- Cosmic BG : muons from cosmics

σxBR Upper Limits

- Observed upper limits (95% CL) on σ ×Br as a function of squark, weakino, and LSP masses
- Tighter upper limits for 2-lepton final state due to the acceptance
- These results can also be considered for other BSM models contributing to the same event topologies

Summary

- No excess was found in no-lepton & SS 2-lepton searches
- The results were interpreted with simplified models
- Provides interface to map the results to specific models
- Also provides information about which phase space of sparticle masses are currently covered.
- Interplay between different search channels is becoming more important & currently under way.
- More simplified model results are coming for wider range of channels with larger dataset! Stay tuned!

BACKUPS

AD Antiproton Decelerator CTF-3 Clic Test Facility CNCS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator -ToF- Neutrons Time Of Flight

ATLAS Detector

No-Lepton Search

Process	Signal Region						
1100055	> 2_iet	> 3_iet	≥ 4-jet,	≥ 4-jet,	High mass		
	2 2-joi	≥ 5-j0	$m_{\rm eff} > 500 { m GeV}$	$m_{\rm eff} > 1000 { m GeV}$	ingn mass		
Z/γ +jets	$32.5 \pm 2.6 \pm 6.8$	$25.8 \pm 2.6 \pm 4.9$	$208 \pm 9 \pm 37$	$16.2 \pm 2.1 \pm 3.6$	$3.3 \pm 1.0 \pm 1.3$		
W+jets	$26.2 \pm 3.9 \pm 6.7$	$22.7 \pm 3.5 \pm 5.8$	$367\pm30\pm126$	$12.7 \pm 2.1 \pm 4.7$	$2.2 \pm 0.9 \pm 1.2$		
$t\bar{t}$ + Single Top	$3.4 \pm 1.5 \pm 1.6$	$5.6 \pm 2.0 \pm 2.2$	$375 \pm 37 \pm 74$	$3.7 \pm 1.2 \pm 2.0$	$5.6 \pm 1.7 \pm 2.1$		
QCD jets	$0.22 \pm 0.06 \pm 0.24$	$0.92 \pm 0.12 \pm 0.46$	$34 \pm 2 \pm 29$	$0.74 \pm 0.14 \pm 0.51$	$2.10 \pm 0.37 \pm 0.83$		
Total	$62.3 \pm 4.3 \pm 9.2$	$55 \pm 3.8 \pm 7.3$	$984 \pm 39 \pm 145$	$33.4\pm2.9\pm6.3$	$13.2\pm1.9\pm2.6$		
Data	58	59	1118	40	18		

SS 2-lepton Limits

SS 2-lepton Limits

SS 2-lepton Limits

