Constraining Light Dark Matter with CDMS II and SuperCDMS

Scott Hertel MIT, SuperCDMS Collaboration DPF '11 (August 10, 2011)

The SuperCDMS Collaboration

Caltech Z. Ahmed, J. Filippini, S. Golwala, D. Moore, R. Nelson, R.W. Ogburn

Fermilab

D.A. Bauer, J. Hall, F. DeJongh, D. Holmgren, L. Hsu, E. Ramberg, R.L. Schmitt, R. B. Thakur, J. Yoo

MIT

A. Anderson, E. Figueroa-Feliciano, S. Hertel, K. McCarthy, S.W. Leman, P. Wikus

NIST

K. Irwin

Queens University P. Di Stefano, N. Fatemighomi, J. Fox, S. Liu, C. Martinez, P. Nadeau, W. Rau, Y. Ricci

Santa Clara University B.A. Young

SLAC/KIPAC

M. Asai, A. Borgland, D. Brandt, P.L. Brink, W. Craddock, E. do Couto e Silva, G.G. Godfrey, J. Hasi, M. Kelsey, C. J. Kenney, P. C. Kim, R. Partridge, R. Resch, D. Wright

Southern Methodist University J. Cooley, B. Karabuga, S. Scorza, H. Qiu

Stanford University

B. Cabrera, M. Cherry , R. Moffatt, L. Novak, M. Pyle, M. Razeti, B. Shank, A. Tomada, S. Yellin, J. Yen

Syracuse University R.W. Schnee, M. Kos and M. Kiveni

University of California, Berkeley M. Daal, T. Doughty, N. Mirabolfathi, A. Phipps, B. Sadoulet, D. Seitz, B. Serfass, D. Speller, K.M. Sundqvist

University of California, Santa Barbara R. Bunker, D.O. Caldwell, H. Nelson

University of Colorado at Denver M. E. Huber, B. Hines

University of Florida D. Balakishiyeva, T. Saab, B. Welliver

University of Minnesota

P. Cushman, L. Duong, M. Fritts, V. Mandic, X. Qiu, A. Reisetter, O. Kamaev, J. Zhang

University of Texas A&M

A. Jastram, K. Koch, R. Mahapatra, M. Platt , K. Prasad, J. Sander

Motivation: DAMA & CoGeNT

Scott Hertel MIT, CDMS Collaboration

CDMS II Detectors

CDMS II at Low Energies

CDMS II at Low Energies

50

40

30

20

Example 2 keV Pulse

CDMS timing rejection fails below ~10 keV...

... which is precisely the 7 GeV WIMP signal region.

2 keVne Threshold → Significant Background Rates

Used only 8 Ge detectors with the lowest trigger thresholds (1.5-2.5 keV) (Yellin method "optimal gaps" happened to all be in a single detector)

2006-2008 data randomly subdivided: 1/4 used to define cuts in yield 3/4 used to calculate limits (241 kg-days raw exposure)

Recoil Energy = Measured - Luke (Luke from charge measurement)

Recoil Energy = Measured - Luke (Luke from charge measurement)

Alternatively, we can eliminate charge noise by assuming a particular yield...

Nuclear Recoil Energy = Measured x Scaling Factor

Nuclear Recoil Energy = Measured x Scaling Factor

Step 1:

Calibrate the absolute scale using Ge activation lines.

The 1.298 keV line calibration was pushed in the conservative *over*estimating direction to the 90% confidence level for each detector.

Nuclear Recoil Energy = Measured x Scaling Factor

Step 2: Define a nuclear recoil scaling factor.

Again conservatively, the slightly low yield seen by CDMS was used. If we are off, we are *over*estimating phonon energy.

Nuclear Recoil Yield Band Definition

Event Selection

The events within the band are the WIMP candidates.

Spectra

Limits

Conservatively assume all candidates may be WIMPs. (ie, no background subtraction)

Limit defined using optimum interval method S. Yellin, PRD, 66, 032005 (2002) arXiv:0709.2701v1 (2007)

Spin-independent elastic scattering WIMP interpretation ruled out for joint DAMA/CoGeNT region.

A portion of the CoGeNT region remains, where only a small fraction of the excess is WIMP recoils.

DAMA/LIBRA, light blue CoGeNT region, and combined region: Hooper et al., PRD 82 123509 (2010)

Varying the Nuclear Recoil Energy Scale

Scott Hertel MIT, CDMS Collaboration

SuperCDMS

Fiducial volume definition is much more stringent, and can be phonon-only.

Luke Phonon Gain

Background rejection destroyed, but threshold greatly lowered (~50eV so far).

Luke et al., Nucl. Inst. Meth. Phys. Res. A, 289, 406 (1990)

A low-threshold, non-zero-background analysis of the CDMS II exposure is inconsistent with the light wimp interpretation of DAMA/CoGeNT.

Future detectors will probe the light mass region significantly more effectively.

Extra Slides

No CoGeNT Background Subtraction

Extrapolating CDMS Backgrounds

How far do we need to push the energy scale for agreement?

Experimental Outlook

Scott Hertel MIT, CDMS Collaboration