

The ArgoNeuT experiment

Roxanne Guenette Yale University

DPF Conference August 12th 2011

- Overview of the LAr TPC concept
- Description of the ArgoNeuT experiment
- Event reconstruction techniques
- CC-inclusive measurement
- Conclusions

LAr TPC concept

Induction plane

Wire #

Collection plane

Wire #

Wire pulses in time give the drift coordinate of the track

ICARUS 50 L in WANF neutrino beam

+ Why Ar?

- Ar is a good target for neutrino (18 p, 22 n)
- Cheap and easy to obtain
- Good for large electric field
- Produces a lot of scintillation light as well as ionization
- Ionization can drift over large distance with high purity
- LArTPCs offer precise spatial resolution (mm scale) and good calorimetry
- LArTPCs allow excellent neutrino interaction characterization and superior background rejection

ArgoNeuT

Liquid-Argon Time Projection Chambers

Status of R&D Program in the US

The first **TPCs in** the United States:

Yale TPC

Location: Yale University Year of first tracks: 2007

Bo

Location: Fermilab Active volume: 0.00002 kton Active volume: 0.00002 kton Year of first tracks: 2008

ArgoNeuT

Location: Fermilab Active volume: 0,0003 kton Year of first tracks: 2008 First neutrinos: June 2009

MicroBooNE

Location: Fermilab Active volume: 0.1 kton Start of construction: 2010

Test stands to improve liquid-argon technology:

Luke

Location: Fermilab Purpose: materials test station Purpose: LAr purity demo Operational: since 2008

LAPD

Location: Fermilab Operational: 2010

+

ArgoNeuT detector

- 175 liter (active) LAr TPC
- Detector was designed and assembled in 2007-2008
- Moved underground in the NuMI beam at FNAL in early 2009
- Data taking in $\nu / \overline{\nu}$ mode from September 2009 to February 2010

Fermilab, NuMI beam line

+ ArgoNeuT

Cryostat Volume	500 Liters
TPC Volume	175 Liters
# Electronic Channels	480
Wire Pitch	4 mm
Electronics Style (Temperature)	JFET (293 K)
Max. Drift Length (Time)	0.5m (330µs)
Light Collection	None

The TPC, about to enter the inner cryostat

The fully-instrumented detector in the beamline

+ ArgoNeuT goals

- Development goals:
 - R&D project for the LArTPC plan in the US

- Physics goals:
 - Measure charged-current cross-sections in the 1-5 GeV range with high sensitivity to the products of FSI
 - Demonstrate dE/dx particle separation (e.g. e/ γ) capabilities of LArTPCs
 - Develop automated reconstruction techniques to be used for all LArTPC experiments

+ ArgoNeuT data taking

- NuMI beam in LE configuration
- Stable, shift-free operation for over 5 months!

Reaction	#events in AV (~1.35E20 POT)
ν_{μ} CC	~6600
$\overline{\nu}_{\mu}$ CC	~4900
ν_{μ} CCQE	~600
ν_e CC	~130

ArgoNeuT data: Events

The color scale represents the energy deposited along the track

■ The wire pulse can be seen in the wire view

+ AgoNeuT events High charge

Preliminary **Event reconstruction** Line finding/fitting + vertex/endpoint finding le University Track3Dreco HarrisVertexFinder **SpacePts** Track3DKalman **PrimaryVertexFinder** VertexFinder2D SpacePointService **DBCluster** Vertex 3D HoughLineFinder **Tracking Finding** LineMerger Wire Hit Hit Clustering **Calibration Finding** 3D Shower Calorimetry CalWire **FFTHitFinder Finding** CaloArgoItaliano Preliminary ShowerReco **EndPoint Finding** Preliminary EndPointModule Hit finding + density-based clustering. 3D reconstruction

Calorimetry

+

Cross-section measurements with ArgoNeuT

- Address CCQE cross-section tension between NOMAD and MiniBooNE (FSI?)
- First natural measurement is the CC-inclusive cross section since it is minimally sensitive to FSIs and to the exclusive channel definitions
- Subsequent ArgoNeuT exclusive channel cross-section measurements can be compared to the inclusive one to perhaps disentangle the effects of FSI and nuclear modeling from actual neutrino-nucleus interactions (e.g. SciBooNE for CC and NC coherent pion production cross sections)

Measuring CC-inclusive XSec

- Data acquired in neutrino mode (8.5 x 10¹⁸POT) have been analyzed
- Ideally, the double cross section would be reported

$$rac{d\sigma}{dartheta_{\mu}dp_{\mu}}$$

- However, it requires very high statistics in order to populate the two dimensional bins in (θ ,p) space and the neutrino mode do not have enough statistics
- The double cross section will be measured for anti-neutrino mode data

Measuring CC-inclusive XSec

+

Measuring CC-inclusive XSec

+ CC interactions

- The key is the μ
- Most muons escape ArgoNeuT
- Need MINOS near detector

We gratefully acknowledge the cooperation of the MINOS collaboration in providing their data for use in this analysis

On the trace of muons

- Events are reconstructed in ArgoNeuT
- They are then matched to muons in MINOS

On the trace of muons

Josh Spitz, PhD Thesis 2011

Cuts are applied to select muons

Fiducial volume	
requirements	3 cm < X < 44 cm (3 cm from boundaries)
	-16 cm < Y < 16 cm (4 cm from boundaries)
	6 cm < Z < 86 cm [6(4) cm from up(down)stream boundary]
Matching	
requirements	$\theta < 0.4 \text{ rad}$
	$\Delta r < 27 \; \mathrm{cm}$
MINOS	
requirement	q < 0

Josh Spitz, PhD Thesis 2011

Total reco. probability =

of completely reconstructed CC ν_{μ} events in FV # of CC ν_{μ} events in FV

ArgoNeuT + matching reco. probability =

of completely reconstructed CC ν_{μ} events in FV

of CC ν_{μ} events in FV with a (-)charged particle reconstructed by MINOS

+

Background contamination

- NC neutrino-induced track originating in ArgoNeuT can be matched with through-going muon MINOS track
- The charge of a wrong-sign neutrino event's muon originating in ArgoNeuT can be reconstructed as negatively charged
- A pion from NC event originating in ArgoNeuT can be matched with a pion that enters MINOS
- A through-going muon that enters ArgoNeuT and is reconstructed by MINOS

Signal (CC ν_{μ}) reconstruction probability	51.3%
Signal (CC ν_{μ}) purity	95.5%
NC/WS background contamination	2.1%
TG muon background contamination	1.2%
NC match w/ TG muon background contamination	1.1%

Measurement!

Conclusions

- ArgoNeuT took 2 weeks of data in neutrino mode
- The neutrino data have been analyzed to make a CCinclusive measurement
- Full reconstruction software operational
- First CC-inclusive differential cross section measurement
- The anti-neutrino mode data will be analyzed with higher (~15x) statistics for CC-inclusive double differential cross section
- Exclusive channels analysis will be performed soon

*

Backup slides

+

True energy distributions

+

Reconstruction probability (per channel)

	Total reconstruction
	probability
$\nu_{\mu} { m CC}$	51.3%
$\nu_{\mu} \text{ CCQE}$	76.4%
ν_{μ} CCRES	59.4%
$\nu_{\mu} \text{ CCDIS}$	42.3%

	ArgoNeuT+matching
	reconstruction probability
$\nu_{\mu} \text{ CC}$	61.5%
$\nu_{\mu} \text{ CCQE}$	84.5%
ν_{μ} CCRES	69.2%
$\nu_{\mu} \text{ CCDIS}$	52.4%

Reconstructed muon parameters

Event rates (MC vs Data)

Josh Spitz, PhD Thesis 2011

+ Backgrounds

Josh Spitz, PhD Thesis 2011

+

Backgrounds

Measurement errors

Measurement errors Muon angle

Josh Spitz, PhD Thesis 2011

Measurement errors Fiducial volume

Josh Spitz, PhD Thesis 2011

 θ_{μ} (degrees)