CoGeNT:

neutrino &
astroparticle physics
using large-mass,
ultra-low noise

germanium detectors
(CANBERRA, PNNL, ORNL, UC, UNC, UW)

PPC HPGe
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Applications:

eLight Dark Matter
eCoherent v detection
*Bp decay (MAJORANA)
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Other nice features brought by the point contact:

That was then...
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amplitude of averaged preamplifier traces (a.u.)
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What is happening?
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standard coaxial HPGe
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MAJORANA-PPCs

150

BP signal is single-site

mostly multiple-site single-site (DEP)
Many backgrounds are multiple-site interaction j interaction
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Detectors studied

Jable Move to modified commercial

“BEGe" detectors (quasiplanar PPCs)

U. Chicago (PPCI) 50mm @& x44mm 460g 1.82keV Canberra
PNNL(PPCI)  50mm@x50mm 527g 215keV  Camberra 30 PPCs already characterized

and stored for 60kg MAJORANA
demonstrator

LBNL (SPPC) B2mm @ x44mm 800g 2.11keV LBNL

LANL (MJ70) 72mm@x37mm 800g 2.15keV PHD's

ORNL (MJB0)  62mm @ x46mm 7409 4-4.5keV PHD’s Crystal storaqe underqround

U. Chicago (BEGe) “standard" 450 g <2 keV Canberra
LBNL (Mini-PPCs) 20mm @ x10mm 17g LBNL GERDA SWIfChIng 1.0 ppCS
for 2" phase

ORNL (BigBEGe) 90mm@x25mm 850g 1.95keV Canberra



MAJORANA as a DM detector

10" ¢
. Light WEMPs (e.g. IiIMSSM) Pseudoscalars etc. (a.k.a."superWIMPs")
> Simulated MAJORANA-demonstrator
210 low-energy backgrounds «a Energy resolution is key:
g0 (P.S.Barbeau %h.D. Diss.) :
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Front End Electronics (Majorana)

Pulse Reset Resistive Feedback
COGENT front ends

(U_Chicago/ANL)
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Front End Electronics (Majorana)

State-of-the-art

Pulse Rese

COGENT front ends
(U_Chicago/ANL)
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We can do
much better
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Electronic noise must be %
eliminated :
at the hardware level. .

shaping time (us)

N There is no other way around it
0 (arXiv:0806.1341)




Making an excellent detector even better:
PPCs can reject surface events using rise-time cuts

energy (keV)

Based on a phenomenon ~40 years old (embarrasing!) w© 05 1 15 2 28 3
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1 monitored down to 1 keVee
via L/K EC peak ratios and
pulser calibrations.

i Working on characterizing
surface background rejection
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The “take-home message” transparency (pre-modulation)

® For m, ~7-11 GeV, a WIMP fits the data nicely
(90% confidence interval on best-it WIMP
incompatible with zero, good y2/dof).

coupling

e Red “island” tells you ~where to look (if you believe in
WIMPs). Additional knowledge (e.g., more calibrations for
fiducial volume and SA/BR) could wiggle it around some (so
do the other regions shown, depending on who plots them).

e Not a big deal on its own, it simply means that our
irreducible bulk-like bckg is ~exponential (the background
model without a WIMP component fares just as well).

e We presently cannot find an obvious known source. But we
can fancy some unexplored possibilities. It is not neutrons,
and there is no evidence yet of detector contamination.

e The low-E excess is composed of asymptomatic bulk-like
events (very different from electronic noise), coming in at a
constant rate.

® The possible subject of interest is where we “got stuck”

in phase space (a number of curious coincidences there), for
a spectrum where most surface events are removed

(<- major contributors to low-energy spectrum). Caveat
Emptor: without DAMA, would we have models there?

e We will attempt to strip the low-E data from known
sources of background after a longer exposure, but all of
them seem modest (see preprint). Planned additional
calibrations will provide improved information on signal
acceptance, background rejection and fiducial volume.
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Can we make sense of the light-WIMP situation?

CoGeNT and CDMS arrive to similar
irreducible spectra via orthogonal

background cuts at low-energy
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CDMS |low-E recent results:

Critique (arXiv:1103.3481):

eUncertainties in energy scale and
method of calibration

eUncertainties (and some clear
WAGS) in background estimates

eUncertainty in residual rate from
cut selection: limits are mainly
extracted from short exposure in
a single detector (T1Z5). An
alternative CDMS analysis during
a different period in Soudan finds
a ~70% larger irreducible rate for
it, but not for a second detector
(T1Z2).

Is T1Z5 stable enough? What is
the uncertainty in these limits
from the choice of cuts?

eDirect comparison of CoGeNT-
CDMS irreducible spectra initially
avoided (a much more
straightforward indicator of
relative sensitivity for
experiments sharing a target).



Can we make sense of the light-WIMP situation?
XENON-100 low-E recent results:
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~ (no channeling) /

Critique (arXiv:1106.0653):

eRecent L, measurement
represents progress, but still
several important loose ends
(energy resolution and L. are not
independent magnitudes)

eSelective display of DAMA region
(uncertainties not included)

eIssue with numerical calculation
of uncertainties (does not pass
self-consistency test = previous
XENONI100 results)

eDiscussion of uncertainties and
strong assumptions made (Leff,
second-guessed events, Poisson vs.
sub-Poisson) broomed under the
carpet.

®Most recent ZEPLIN-III L . (in
situ measurement) still pointing at
a vanishing value at few keV._.

eLow-energy Am/Be rates: are
they what is expected? Crucial for
credibility of claimed sensitivity.



Can we make sense of the
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inferred recoil energy scale (keV )

light-WIMP situation?

XENON-10 low-E recent results:
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Behavior predicted in
arXiv:1010.5187 d

/

“Best-fit Monte Carlo” method |
in its full splendor (right-to-left
evolution over the last two years)

ol . ) PR |

10 100
ionization yield (electrons)

An additional ~1 keV shift in energy scale turns “robust exclusion” into
“evidence” for a light-WIMP (hey, why stop now?)

Critique (arXiv:1106.0653,
1010.5187):

e Very promising method.

e However, as is stands today:
pure drivel

e Some entirely misleading
statements about “interesting”
population of low-energy events.

® Energy scale employed clashes
(by ~three orders of magnitude)
with existing measurements of
ionization yield in very low-
energy Xe ion-surface literature.

e Seems like some XENONIO
authors do not mind contradicting
themselves. Continuously.

e No excuse for this (this energy
scale can be measured via (n;,,y)
calibrations in the relevant range)




Can we make sense of the light-WIMP situation?
DAMA uncertainties (Q,, channeling)

e Ongoing precision measurements of
CsI[Na] and NaI[Tl] quenching factor
and CHANNELING at UC to cast light
on effects of methodology, kinematic

cutoff, etc. 0.2F
» ' 0.1}
0.05¢ o

002
001t
0.005¢

0.002}
0.001 1

-
s

| Bozorgnia, Gelmini & Gondolo
arXiv:1006.3110v]

rracuon

g simultaneous

Wmeasurements of

electron (Compton)

recoil energy and
gnuclear recoil

' energy for CsI[Na],

and NaI[Tl]
(ongoing work at UC)



Can we make sense of the light-WIMP situation?

These figures ~1 year old,
CRESST-I1 Recent update: 20 irreducible recoils in excess

over bckgs (after much studying of those), 4.60 claim?

ord in the street: paper around fime o
Talk by W. Seidel @ WONDER 2010, March 22 to 23

CaWQO, target, 9 detectors, about 400 kg d
excess of single-scatter events in O-band (magenta)

Ch5/6

Light Yield
events per keV

e 1 1 1 1 1 1 ! 1 1 1 1 I
0 50 100 150
Energy [keV]

shape agrees with ~ 10 GeV WIMP

T. Schwetz, ITP Heidelberg, 14 Oct 2010 —-p. 29
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One should always start with the foundations:
PPC sub-keV recoil calibrations at the KSU TRIGA reactor
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One should always start with the foundations:
PPC subjke rcoil calibrations at the KSU TRIGA reactor
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Healthy pulses, all the way down to 0.5 keVee threshold

(electronic noise

= one thing the CoGeNT “excess” is not)
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CoGeNT: must keep looking for non-exotic explanations

It is possible to come up with *MANY* natural explanations, however none yet satisfactory.
A PPC-based 60kg MAJORANA demonstrator would see annual mod. not just in rate, also in <E>.

N_‘I‘ype R.J. Dinger, IEEE TNS 22 (1975) 135; H.L. Malm and
R.J. Dinger, IEEE TNS 23 (1976) 76.
surface *V,
1
channel S AaE T & T
yrmg X
: A
t \ j
P : : [
P <
n+-—~ : S b
pt+ But what are the sources?
N We want to investigate, but will be hard.
Fig. 4: The paths of the electrons and holes in a
detector with an n-type surface channel
[for further explanation see text].
1
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CoGeNT: must keep looking for non-exotic explanations

It is possible to come up with *MANY* natural explanations, however none yet satisfactory.
A PPC-based 60kg MAJORANA demonstrator would see annual mod. not just in rate, also in <E>.

ionization energy in active region (keVee)

ss electronic nois

N_fype R.J. Dinger, IEEE TNS 22 (1975) 135; H.L. Malm and
R.J. Dinger, IEEE TNS 23 (1976) 76. e i}
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Everything was going well until March 17t (Soudan fire)...
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Everything was going well until March 17™ (Soudan fire)...
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®CoGeNT region considerably smaller than before (but within previous ROI),
next to DAMA.

® Most CoGeNT uncertainties not included in this figure

Remember that ~7 GeV/c?, 10-4 cm? light WIMP we mentioned in discussing CDMS?



Everything was going well until March 17™ (Soudan fire)...
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eExcellent stability in
detector noise and trigger
threshold allows search for
annual modulation. Augurs
well for other PPC-based
searches.

oL -shell peak correction
necessary, but prediction is
very robust and
uncertainties small.



Everything was going well until March 17t (Soudan fire)...
60 1]

e No fancy estimators tried (several
available). Two basic unoptimized methods
point at ~2.80 preference of a modulated
rate over the null hypothesis.

140}

e Compatible with WIMP hypothesis

120f
: expectations (amplitude, phase, period).

—
S
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80f

: 1 ® Spectral and temporal analysis are prima
23 - = facie congruent with a light-WIMP

+ + hypothesis.
sof ++ + l ] ® Modulation absent for surface events
30 T +'T' + 1 and also at higher energies.
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160 SURFACEE'\ENTS 1 o Lots of independent interpretations via
+_+_ ++ _+_ ] data-sharing, but a few are forgetting
140—‘H» 'l‘l ! some basics. Hint: there must be reasons
120 T+‘+‘ _f_ k for the experimentalists to include an
0530 kev., exponential background in their models...
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Are DAMA, CoGeNT and (rumored) CRESST in agreement or not?
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e What is the exact endpoint of the
CoGeNT modulation (hard to tell w/ 15 mo)

'/Some surface background contamination

next to threshold? (analysis possible now
with sufficient statistics) -> shifts CoGeNT
ROI tfo lower coupling and larger mass.

e Channeling at few %? Contemplated by
some models, if you read papers carefully.
We'll know soon (experimentally). Idem for
value of Q,-

® CoGeNT modulation larger than
expected? (again, hard to tell after just 15
mo). If so, what happens to the DAMA
ROI? Is a non-Maxwellian halo imperative?

i

® Most importantly, CoGeNT is now taking
data again... (perhaps we should wait to
see what happens next there before
asking so many gs...)



What, me ask for
additional experiments?

UC/PNNL
design
CoGeNT-4
(C4)

Aiming to
reduce
parallel-f
noise

(and improving
backgrounds).

Roughly 10

times present
target mass
(annual modulation)

Expected start
summer 2011.




Jin-Ping Underground Lab

* Basic Infrastructures
Completed,

* Research Started Sept 27,
2010.
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Data Taking Configurations in CJPL - Feb 2011




