Search for díphoton events with large missing transverse energy at DO

Yunhe XIE Fermilab Aug 10 @DPF 2011 for D0 collaboration

- Introduction
- Experimental Apparatus
- Event Selection
- Background Estimation
- Results
- Conclusions

 W^{\pm} .7

 χ^0_2

8

0000

ĩ±

 Z^*

 q_D^*, q_S^*

 $l_D^{*\pm}$

- Standard Model (SM) predicts low rate for high $p_T \gamma \gamma$ with large Missing Transverse Energy (MET)
- * A sensitive channel to probe new physics beyond SM
- Two benchmark models are explored
 - Gauge Mediated Supersymmetry (SUSY) Breaking (GMSB)
 - \checkmark SPS8 is used, effective SUSY breaking scale Λ
 - ✓ the next-to-lightest SUSY particle (NLSP) is the lightest neutralino, which decays to a photon and massless gravitino \bar{q} , $\bar{q}_{D}^{*}, \bar{q}_{S}^{*}, q_{D}^{*}$, $\bar{q}_{D}^{*}, \bar{q}_{S}^{*}, \bar{q}_{D}^{*}$, $\bar{q}_{D}^{*}, \bar{q}_{S}^{*}, \bar{q}_{D}^{*}$, $\bar{q}_{D}^{*}, \bar{q}_{S}^{*}, \bar{q}_{D}^{*}$, $\bar{q}_{S}^{*}, \bar{q}_{D}^{*}, \bar{q}_{S}^{*}, \bar{q}_{D}^{*}$, $\bar{q}_{S}^{*}, \bar{q}_{D}^{*}, \bar{q}_{S}^{*}, \bar{$
 - Universal Extra Dimensions (UED)
 - $\checkmark~$ a single UED compactified with radius R_{C}
 - ✓ the lightest Kaluza-Klein (KK) particle (LKP) is the KK photon, which decays to a photon and a graviton
 - both resulting in the final state $\gamma\gamma$ +MET+X

* Tevatron: $p\bar{p}$ collider with c.o.m. = 1.96 TeV

* Thanks Accelerator Division (AD) for the large dataset!

Run II Integrated Luminosity

19 April 2002 - 31 July 2011

DO Detector

- * Central tracking system: determines Primary Vertex (PV)
- Calorimeter: detects photon objects and measures MET
- \ast Central Preshower (CPS) detector helps both PV and γ

Y. XIE Fermilab

- Signal Monte Carlo (MC) samples are generated and simulated with GEANT for detector response
- Selection criteria:
 - Events with at least two photon candidates satisfying:
 - \checkmark E_T > 25GeV in Central Calorimeter (CC)
 - ✓ > 95% energy deposited in EM layers
 - ✓ isolated in both calorimeter and tracking system without matched track
 - \checkmark shower shape consistent with an EM shower
 - ✓ NN output to discriminate from jets
 - MET > 50 GeV
 - \checkmark correction from EM objects, jets, and p_T of the muons

- PV identification is crucial
 - $\Delta Z(PV, CPS \text{ of EM}) < 10 \text{ cm to reduce the misidentified PV}$
- * $\Delta \phi$ requirements to reduce instrumental sources of MET
 - $\Delta \phi$ (MET, leading jet) < 2.5; $\Delta \phi_{min}$ (MET, γ) > 0.2; $\Delta \phi(\gamma, \gamma)$ > 0.1

- Backgrounds with inherent
 MET
 - SM (W \rightarrow ev) with electron misidentified as γ
 - electron faking photon
 rate is measured in real
 data
 - estimated from eγ data after removing possible contaminations
 - SM YY+MET events like YY events produced with W/Z
 - estimated using MC

- SM events with instrumental MET
 - two types:
 - \checkmark SM $\gamma\gamma$ events
 - ✓ events with at least one jet misidentified as γ so called misID jet events
 - ✓ estimated with data and normalized to control region data (MET < 10 GeV)

* All the systematic uncertainties as shown in the table

Component	Systematic			
Instrumental $\not\!\!\!E_T(\gamma\gamma + \text{jet misID})$	$\gamma\gamma \not\!\!\!E_T$ distribution - <i>ee</i> data vs. $\gamma\gamma$ MC			
	jet misID $\not\!\!\!E_T$ distribution			
	purity uncertainty	Shape		
ele misID	uncertainty in residual from instrumental $\not\!\!\!E_T$			
	normalization uncertainty (25%) from $e \rightarrow \gamma$ fake rate	Flat		
$W/Z + \gamma\gamma$	luminosity (6.1%)			
	CPS-PV scale factor (3%)	Flat		
	PhotonID (3% per photon)	Flat		
	Trigger (2%)	Flat		
GMSB and UED Signal	luminosity (6.1%)			
	CPS-PV scale factor (3%)	Flat		
	PhotonID (3% per photon)	Flat		
	Trigger (2%)	Flat		
	PDFs (5% GMSB, 20% UED)	Flat		

- No evidence for BSM is observed
- * GMSB: Λ < 124 TeV ($m_{\chi_0^1}$ < 175 GeV) excluded at 95% C.L.
- * UED: R_c^{-1} < 477 GeV excluded at 95% C.L.

E_T Interval,	Observed	SM Background Events			Expected Signal Events			
GeV	Events	Instr. $\not\!\!E_T$	Genuine $\not\!\!E_T$	Total	GMSB	GMSB	UED	UED
					$\Lambda = 100 \text{ TeV}$	$\Lambda = 120 \text{ TeV}$	$R_c^{-1} = 420 \text{ GeV}$	$R_c^{-1} = 460 \mathrm{GeV}$
35 - 50	18	9.6 ± 1.9	2.3 ± 0.5	11.9 ± 2.0	1.8 ± 0.1	0.3 ± 0.1	1.4 ± 0.1	0.3 ± 0.1
50 - 75	3	3.5 ± 0.8	1.5 ± 0.3	5.0 ± 0.9	4.1 ± 0.3	0.8 ± 0.1	2.9 ± 0.2	0.6 ± 0.1
> 75	1	1.1 ± 0.4	0.8 ± 0.1	1.9 ± 0.4	14.3 ± 1.1	4.4 ± 0.4	24.7 ± 2.0	6.4 ± 0.5

- * No evidence for BSM is observed in γγ+MET+X samples
- * Results are interpreted with two benchmark models
 - SPS8 GMSB:
 - \checkmark Λ < 124 TeV excluded at 95% C.L.
 - ✓ $m_{\chi_0^1}$ < 175 GeV excluded at 95% C.L.
 - UED:
 - ✓ R_c^{-1} < 477 GeV excluded at 95% C.L.
- Published on <u>PRL 105, 221802 (2010)</u> also available @<u>arxiv:</u> <u>1008.2133</u>

Thank you!

Backup Slídes

Y. XIE Fermilab

- * The GMSB model parameters:
 - SPS8 :
 - \checkmark M_{mes} = 2 Λ , N_{mes} = 1, tan β = 15, sgn(μ)>0, and Λ is free

Use CPS associated with the photon to confirm the PV identification

