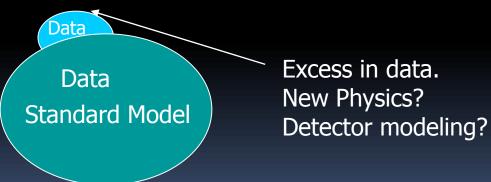


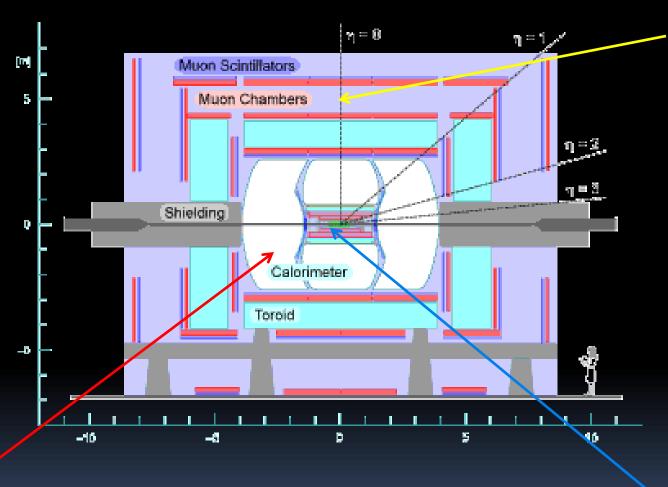
Model Independent Search for New Phenomena

Peter Renkel: Southern Methodist Uni.


on behalf of the D0 Collaboration. August 2011

Any sign of new physics in Tevatron data?

- Do we see what we expect from Standard Model?
 - Is this excess statistically significant?
 - Do we correctly model our detector/physics?
 - New Physics?



- Split the Tevatron data into many final states
- For each final state, examine multiple test distributions
- If for a particular final state/test distribution see an excess, ask questions

General, allows to analyze many final states, however not as sensitive as dedicated approaches

The D0 experiment

Muon system muon tracking

Calorimeter em objects

Fiber and Silicon trackers

Strategy

Data

MC

1fb⁻¹

Leptonic

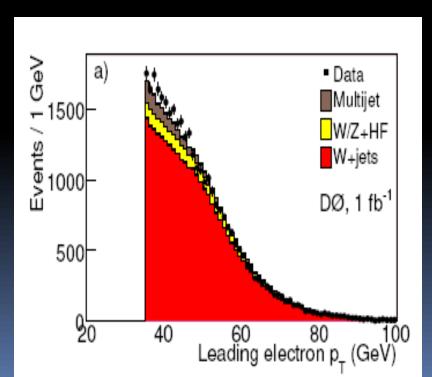
Corrections derived from fitting MC to DATA in 7 final states

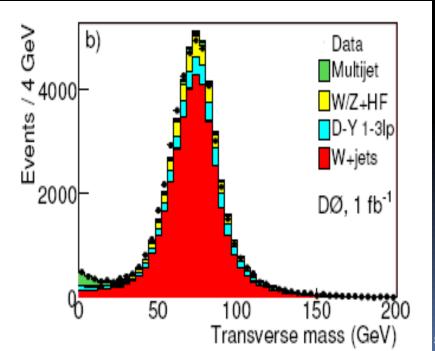
Preselection ($p_T > \sim 15 - 35 \text{ GeV}$) corrections, splitting into multiple final states

QCD from Data

Vista.

Looking at DATA/MC shape/number agreement for each of final states in the bulk

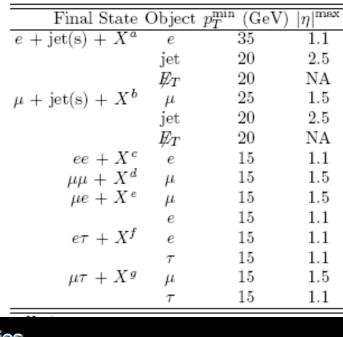

Search for specific new physics high p_T tails, SLEUTH


Fit factors

- Fit basic distributions (like objects p_T , η , ϕ) simultaneously and use more complex variables to check.
- 7 inclusive final states
 - ee, eμ, μμ, e(veto on second lepton), μ(veto on second lepton), eτ, μτ
 - → High p_T tails are out of the fit

Basic variable


Variable to check



Vista

- Divide data into 117 exclusive final states
 - Based on high p_T objects
 - Jets, b-jets, electrons, muons, taus, MET
- For each final state and for each distribution, check:
 - Data/MC agreement
 - In number of events
 - In shape using Kolmogorov-Smirnov probabilities
 - Should account for large number of final states/distributions (trial factor)

Probability to see the final state as unlikely as state i with probability p_i :

trials
$$\tilde{P} = 1 - \prod_{i} (1 - p_i)$$

 \tilde{P} < 0.001 corresponds to 3σ deviation

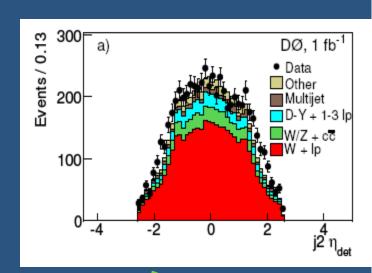
Probabilities

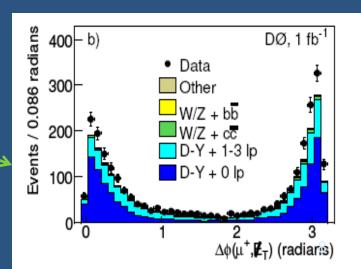
In this analysis, we analyze tenth of final states and hundreds of distributions Therefore, the probability to observe a significant access is much larger than for a dedicated analysis

We correct for this effect taking into considerations the number of trials (final states or distributions)

trials
$$\tilde{P} = 1 - \prod_{i} (1 - p_i)$$

$$p_i = \int exp \{ -(N - N_{SM})^2 / 2 \sigma_{SM}^2 \} dN \sum_{i=Ndata}^{\infty} N^i / i! exp{-N} \}$$


Gaussian : Probability that N is average, when we expect N_{SM} from SM


Poisson:
Probability to observe
at least N_{data} with average N

Vista results

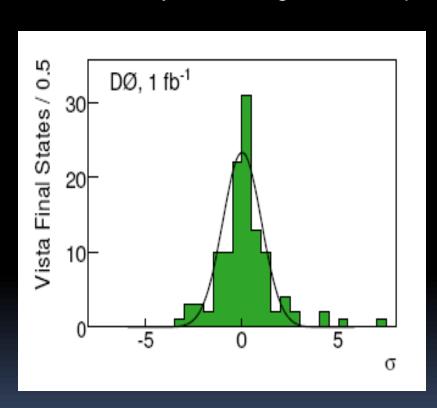
- Total final states 117
- Discrepant final states 2 (3σ = discrepant)
- Total distributions 5543
- Shape discrepancies 16 (3σ = discrepant)
- Modeling issues (mostly spatial jet distributions)
 - No systematic effects are taken into account
 - Modeling jet recoil in the forward region
 - μ + 2 jets + MET
 - 4.5 σ
 - Resolutions for high p_T muons
 - μ +μ- + MET
 - 6.7 σ

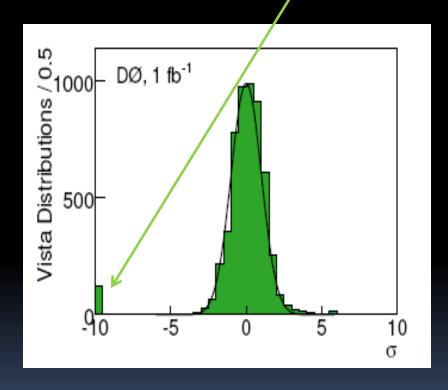
Most discrepant Vista distributions

VISTA Final State Histogram σ $\mu^{\pm} + 2 \text{ jets} + \cancel{E}_T M_T(W, j_2) 4.4$ $\Delta \mathcal{R}(\mu, j_2) 4.4$ $M(\mu, j_2) 4.6$ $\Delta \eta(j_1, j_2) 3.8$ $\mu^{\pm} + 1 \text{ jet} + \cancel{E}_T p_T(W) 8.1$ $\Sigma p_T 5.1$ $p_T(\mu) 4.1$
$\Delta \mathcal{R}(\mu, j_2) = 4.4$ $M(\mu, j_2) = 4.6$ $\Delta \eta(j_1, j_2) = 3.8$ $\mu^{\pm} + 1 \text{ jet} + \cancel{E}_T = p_T(W) = 8.1$ $\Sigma p_T = 5.1$
$M(\mu, j_2)$ 4.0 $\Delta \eta(j_1, j_2)$ 3.8 $\mu^{\pm} + 1 \text{ jet} + \cancel{E}_T$ $p_T(W)$ 8.1 Σp_T 5.1
$\Delta \eta(j_1, j_2)$ 3.8 $\mu^{\pm} + 1 \text{ jet} + \cancel{E}_T$ $p_T(W)$ 8.1 Σp_T 5.1
$\mu^{\pm} + 1 \text{ jet} + \cancel{E}_T \qquad p_T(W) = 8.1 \\ \Sigma p_T = 5.1$
Σp_T 5.1
$-\Gamma$
$p_T(\mu)$ 4.1
$M_T(\mu^{\pm}, E_T) \ 4.1$
$\Delta\phi(\mu,j)$ 3.1
$e^{\pm} + 2 \text{ jets } + \cancel{E}_T \Delta \eta(j_1, j_2) 4.2$
$M_T(j_2, E_T)$ 4.0
$M_T(W, j_2)$ 3.0
$e^{\pm} + 1 \text{ jet } + \cancel{E}_T \Delta \phi(e^+, j) 5.5$
$p_T(e^{\pm})$ 4.4
$p_T(W) = 3.8$
$\not\!$

Shown are distributions with discrepancies >3σ

Mostly spatial distributions involving jets


Reminder: no systematics are considered



Vista comparison

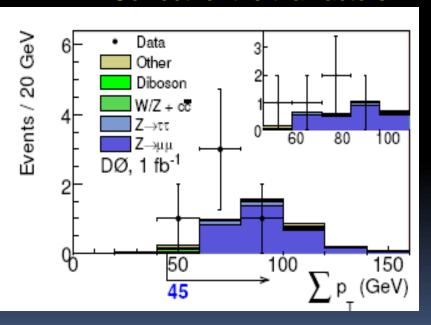
perfect agreement

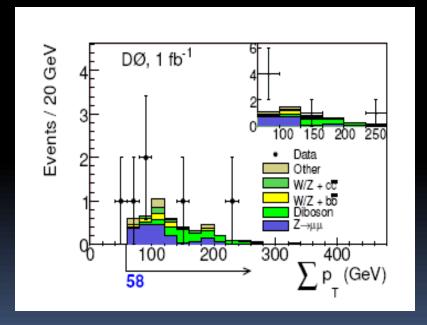
Each entry in a histogram corresponds to the deviation for a distribution

The σ distribution for the 117 final states

The σ distribution for the 5543 distributions

High p_T tails. Sleuth


Merge Vista final states


Lepton universality

Charge conjugation

117 Vista final states -> 31 SLEUTH final states

Cut $\Sigma p_T > C_0$ that gives the most significant excess Correct for the trial factors

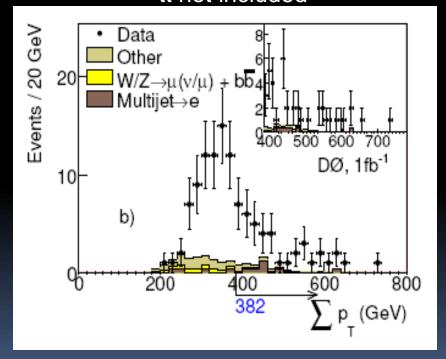
OS eµ final state

OS eµ + MET final state

Tests of the method

Are we able to re-discover tt pairs?

Remove tt MC


Run SLEUTH

Obvious discrepancy shows that SLEUTH can re-discover top pairs.

tt included

GeV Data Other Events / 20 W/Z→μ(ν/μ)+bb Multijet→e] 20 tt→µX tt⊸eX 550 600 650 700 750 DØ, 1fb-1 10 a) 200 400 800 (GeV)

tt not included

 $\tilde{P} \sim 1.1 \times 10^{-5} << 10^{-3}$

Most discrepant SLEUTH final states

		_
Final State	P	$ ilde{\mathcal{P}}^a$
$\ell^+\ell^- + E_T$	$< 10^{-5}$	< 0.001
$\ell^{\pm} + 2j + \cancel{E}_T$	$< 10^{-5}$	< 0.001
$\ell^{\pm} + au^{\mp} + ec{\cancel{E}}_T$	8.9×10^{-5}	0.0050
$\ell^{\pm} + \cancel{E}_T + 1j$	0.00036	0.019
$e^{\pm}\mu^{\mp} + 2b + E_T$	0.0028	0.12
$\ell^{\pm}\tau^{\pm} + 2j + \cancel{E}_T$	0.0028	0.12
$\ell^{\pm} + 2b + \cancel{E}_T$	0.0077	0.3
$e^{\pm}\mu^{\mp} + \cancel{E}_T$	0.0081	0.31
$\ell^{\pm} au^{\pm}$	0.057	0.91
$\ell^{\pm} + 2b + 2j + \cancel{E}_T$	0.099	0.98

This passes the threshold of 3σ due to problems with detector modeling. Same as in VISTA

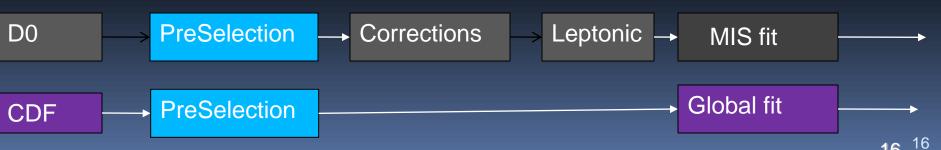
Conclusion

- Performed Model-Independent search in D0 data
- Most states agree after trials
- The discrepant states/distributions are due to modeling issues
- SLEUTH search for high p_⊤ tails.
 - No surprises

Backup

Preselection and Corrections

- Alpgen and PYTHIA
- **Multijet from Data**



- Leptonic final states
- Channel specific kinematic cuts
- Collaboration-wide corrections
 - K-factors
 - **Trigger efficiencies**
 - Lumi reweighting

- **PYTHIA and MadEvent**
- Multijet from MC

- Channel specific kinematic cuts
- **Corrections later at Vista level**
 - Constrained global fit
 - 43 fit parameters

