Model Independent Search for New Phenomena

Peter Renkel: Southern Methodist Uni.
on behalf of the D0 Collaboration. August 2011
Any sign of new physics in Tevatron data?

- Do we see what we expect from Standard Model?
 - Is this excess statistically significant?
 - Do we correctly model our detector/physics?
 - New Physics?

- Look in all Tevatron data
 - Split the Tevatron data into many final states
 - For each final state, examine multiple test distributions
 - If for a particular final state/test distribution see an excess, ask questions

General, allows to analyze many final states, however not as sensitive as dedicated approaches
The D0 experiment

- Muon system
- Muon tracking
- Calorimeter
- Em objects
- Fiber and Silicon trackers
Data MC

Preselection ($p_T > \sim 15 - 35 \text{ GeV}$) corrections, splitting into multiple final states

Vista.
Looking at DATA/MC shape/number agreement for each of final states in the bulk

Search for specific new physics high p_T tails, SLEUTH

Leptonic
Corrections derived from fitting MC to DATA in 7 final states

QCD from Data

1 fb$^{-1}$
Fit factors

- Fit basic distributions (like objects p_T, η, ϕ) simultaneously and use more complex variables to check.
- 7 inclusive final states
 - ee, $e\mu$, $\mu\mu$, e(veto on second lepton), μ(veto on second lepton), $e\tau$, $\mu\tau$
 - High p_T tails are out of the fit
Vista

- Divide data into 117 exclusive final states
 - Based on high p_T objects
 - Jets, b-jets, electrons, muons, taus, MET
 - For each final state and for each distribution, check:
 - Data/MC agreement
 - In number of events
 - In shape using Kolmogorov-Smirnov probabilities
 - Should account for large number of final states/distributions (trial factor)

Probability to see the final state as unlikely as state i with probability p_i:

$$\tilde{P} = 1 - \prod_{i} (1 - p_i)$$

$\tilde{P} < 0.001$ corresponds to 3σ deviation
In this analysis, we analyze tenth of final states and hundreds of distributions. Therefore, the probability to observe a significant access is much larger than for a dedicated analysis. We correct for this effect taking into considerations the number of trials (final states or distributions).

\[P = 1 - \prod_{i} (1 - p_i) \]

\[p_i = \int \exp \left\{ - \frac{(N - N_{SM})^2}{2 \sigma_{SM}^2} \right\} dN \sum_{i=N_{data}}^{\infty} \frac{N^i}{i!} \exp\{-N\} \]

Gaussian: Probability that \(N \) is average, when we expect \(N_{SM} \) from SM

Poisson: Probability to observe at least \(N_{data} \) with average \(N \)
Vista results

- Total final states – 117
- Discrepant final states – 2 (3σ = discrepant)

- Total distributions – 5543
- Shape discrepancies - 16 (3σ = discrepant)

- Modeling issues (mostly spatial jet distributions)
 - No systematic effects are taken into account
 - Modeling jet recoil in the forward region
 - μ + 2 jets + MET
 - 4.5 σ
 - Resolutions for high p_T muons
 - $\mu^+\mu^- +$ MET
 - 6.7 σ
Most discrepant Vista distributions

<table>
<thead>
<tr>
<th>VISTA Final State</th>
<th>Histogram</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu^\pm + 2$ jets + \not{E}_T</td>
<td>$M_T(W, j_2)$</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>$\Delta R(\mu, j_2)$</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>$M(\mu, j_2)$</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>$\Delta \eta(j_1, j_2)$</td>
<td>3.8</td>
</tr>
<tr>
<td>$\mu^\pm + 1$ jet + \not{E}_T</td>
<td>$p_T(W)$</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>Σp_T</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>$p_T(\mu)$</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>$M_T(\mu^\pm, \not{E}_T)$</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>$\Delta \phi(\mu, j)$</td>
<td>3.1</td>
</tr>
<tr>
<td>$e^\pm + 2$ jets + \not{E}_T</td>
<td>$\Delta \eta(j_1, j_2)$</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>$M_T(j_2, \not{E}_T)$</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>$M_T(W, j_2)$</td>
<td>3.0</td>
</tr>
<tr>
<td>$e^\pm + 1$ jet + \not{E}_T</td>
<td>$\Delta \phi(e^\pm, j)$</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>$p_T(e^\pm)$</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>$p_T(W)$</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>\not{E}_T</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Shown are distributions with discrepancies $>3\sigma$

Mostly spatial distributions involving jets

Reminder: no systematics are considered
Each entry in a histogram corresponds to the deviation for a distribution.

The σ distribution for the 117 final states

The σ distribution for the 5543 distributions
High p_T tails. Sleuth

Merge Vista final states
Lepton universality
Charge conjugation
117 Vista final states -> 31 SLEUTH final states

Cut $\Sigma p_T > C_0$ that gives the most significant excess
Correct for the trial factors

OS $e\mu$ final state

OS $e\mu + \text{MET}$ final state
Tests of the method

Are we able to re-discover $t\bar{t}$ pairs?

Remove $t\bar{t}$ MC

Run SLEUTH

Obvious discrepancy shows that SLEUTH can re-discover top pairs.

$P \sim 1.1 \times 10^{-5} \ll 10^{-3}$
Most discrepant SLEUTH
final states

<table>
<thead>
<tr>
<th>Final State</th>
<th>\mathcal{P}</th>
<th>$\tilde{\mathcal{P}}^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell^+ \ell^- + \not{E}_T$</td>
<td>$< 10^{-5}$</td>
<td>< 0.001</td>
</tr>
<tr>
<td>$\ell^{\pm} + 2j + \not{E}_T$</td>
<td>$< 10^{-5}$</td>
<td>< 0.001</td>
</tr>
<tr>
<td>$\ell^{\pm} + \tau^+ + \not{E}_T$</td>
<td>8.9×10^{-5}</td>
<td>0.0050</td>
</tr>
<tr>
<td>$\ell^{\pm} + \not{E}_T + 1j$</td>
<td>0.00036</td>
<td>0.019</td>
</tr>
<tr>
<td>$e^{\pm} \mu^\mp + 2b + \not{E}_T$</td>
<td>0.0028</td>
<td>0.12</td>
</tr>
<tr>
<td>$\ell^{\pm} \tau^{\pm} + 2j + \not{E}_T$</td>
<td>0.0028</td>
<td>0.12</td>
</tr>
<tr>
<td>$\ell^{\pm} + 2b + \not{E}_T$</td>
<td>0.0077</td>
<td>0.3</td>
</tr>
<tr>
<td>$e^{\pm} \mu^\mp + \not{E}_T$</td>
<td>0.0081</td>
<td>0.31</td>
</tr>
<tr>
<td>$\ell^{\pm} \tau^{\pm}$</td>
<td>0.057</td>
<td>0.91</td>
</tr>
<tr>
<td>$\ell^{\pm} + 2b + 2j + \not{E}_T$</td>
<td>0.099</td>
<td>0.98</td>
</tr>
</tbody>
</table>

This passes the threshold of 3σ due to problems with detector modeling. Same as in VISTA.
Conclusion

- Performed Model-Independent search in D0 data
- Most states agree after trials
- The discrepant states/distributions are due to modeling issues
- SLEUTH – search for high p_T tails.
 - No surprises
Backup
Preselection and Corrections

- Alpgen and PYTHIA
- Multijet from Data

- Leptonic final states
- Channel specific kinematic cuts

- Collaboration-wide corrections
 - K-factors
 - Trigger efficiencies
 - Lumi reweighting

- PYTHIA and MadEvent
- Multijet from MC

- Channel specific kinematic cuts

- Corrections later at Vista level
 - Constrained global fit
 - 43 fit parameters

CDF
PreSelection → Corrections → Leptonic → MIS fit

D0
PreSelection → Corrections → Global fit