Unravelling Jets at Colliders

Saba Zuberi UC Berkeley/LBL

Outline

- An Event
- What's a Jet
- Jet substructure tools
- Theory tools: Analytic and Monte Carlo
- Event generation: the challenge.

Saba Zuberi

Structure of an event

• QCD at colliders: Jets!

Saba Zuberi

Final State Radiation

Global Soft Radiation: talks between jets

What's a Jet?

Saba Zuberi

DPF Aug 9, 2011

Jets: Unfolding QCD Evolution

Saba Zuberi

DPF Aug 9, 2011

Jets: Unfolding QCD Evolution

DPF Aug 9, 2011

Jets: Unfolding QCD Evolution

• Jet algorithms attempt to unfold QCD branchings.

- QCD effects projected onto jet over a wide range of scales
- Associate jet to single hard object
- Combine pairs with strongest divergences (soft and collinear) most likely to belong together

 $\frac{\alpha_s}{E_g(1-\cos\theta_g)}$

DPF Aug 9, 2011

Saba Zuberi

Jet Algorithms

• Jet recombination algorithms

$$\rho_{ij} = \min\left(E_i^{\alpha}, E_j^{\alpha}\right) \frac{\Delta R_{ij}}{R}, \qquad \rho_i = E_i^{\alpha}$$

• If ρ_{ij} is smallest

• If ρ_i is smallest, particle is promoted to candidate jet

• **Repeat** until all particles have formed candidate jets Apply p_T^{cut} to jets

Saba Zuberi

DPF Aug 9, 2011

Jet Algorithms

• Jet recombination algorithms

Saba Zuberi

DPF Aug 9, 2011

Beyond Jet to Parton Mapping

At large p_T boosted decay products lead to fat jet

• In high $p_T >> m_W$ regime at LHC see fat jets in many EW decays

Saba Zuberi

DPF Aug 9, 2011

Jet Substructure

• Goal: Improve discrimination between 'QCD jets' and 'Higgs/top jets'

DPF Aug 9, 2011

Jet Substructure

• Goal: Improve discrimination between 'QCD jets' and 'Higgs/top jets'

• Approaches:

- Identifying subjets: use kinematics of hard splitting
- Cuts on energy flow based on color of signal vs QCD jets
- Grooming: remove soft contamination from UE and pile-up

Saba Zuberi

DPF Aug 9, 2011

Jet Substructure: Higgs

Mass-Drop Filter

Butterworth, Davison, Rubin, Salam (2008)

Saba Zuberi

Jet Substructure: Higgs

Mass-Drop Filter

Butterworth, Davison, Rubin, Salam (2008)

Jet Substructure: Top Tagging

Saba Zuberi

Jet Grooming

- Pros: Method not tied to specific boosted heavy object
- UE lower energy, not localized.

• Pruning: Decluster and discard softer particle if splitting is wide angled or soft

Ellis Vermillion Walsh (2008)

$$\frac{\min(p_{T_i}, p_{T_j})}{p_{T_{i+j}}} < z \quad , \quad R_{ij} > D$$

• Trimming

Krohn, Thaler, Wang (2009)

Saba Zuberi

DPF Aug 9, 2011

A comparison

Boost 2010 1012.5412

DPF Aug 9, 2011

Saba Zuberi

Remarkable Experimental Progress

• Mass Drop Filter

Events are selected to be consistent with $W \rightarrow \ell \nu + 1 {
m jet}$

• Pruning

Applied to tag W jets decaying hadronically

Remarkable Experimental Progress

• Boosted $t\bar{t}$ event:

Theoretical Tools

Monte Carlo

• Key Feature: Monte Carlos are exclusive

Basic role of event generator: return weight for each point in N-body phase space $d\sigma/d\Phi_N$

- Can implement arbitrary experimental cuts $\{\eta_{cut}, p_T^{cut}, R\}$ Major challenge for analytic calculations.
- Leading small pT resummation and large pT fixed order Analytic calculations available to much higher precision
- Allows one to be exclusive in jet multiplicities Eg. $pp \rightarrow H + 0, 1, 2 \text{ jets}$ have different backgrounds and sensitivities
- Returns hadrons not partons. Model non-perturbative physics.
 Dependence on tunes
- Analytic calculations provide a cross-check of MC eg jet substructure
- Insights in to designing/understanding jet tools

Saba Zuberi

Analytic Control Over Jet Observables

- Framework to calculate in QCD prove factorization, integrate hard ME and resum large logarithms
 - ➡ Soft-collinear Effective Theory (SCET)

Bauer, Fleming, Luke, 2000 Bauer, Fleming, Pirjol, Stewart 2001

Separtes key features of QCD evolution: collinear and soft with systematic power counting

$$p_c \sim Q(1, \lambda^2, \lambda) \qquad p_s \sim Q(\lambda^2, \lambda^2, \lambda^2)$$

$$p = (E + p_z, E - p_z, p_\perp)$$

$$p_{\perp} \sim \lambda Q$$

$$n = (1, 0, 0, 1)$$

- Many applications to jets:
 - Jet Shapes and Jet algorithm (Ellis, Hornig, Lee, Walsh, Vermilion), pp to N-jettiness (Stewart, Tackmann, Waalewijn), H + 0 jets NNLL NNLO (Berger, Marcantonini, Stewart, Tackmann, Waalewijn), Dijet invariant mass spectra (Bauer, Tackmann, Walsh, SZ)

Saba Zuberi

Understanding Jet Algorithms

- Power counting easy way to understand key features of jet structure (Walsh, SZ)
- Can use to determine test for when factorization of substructure method fails

00000

0000

H

An Example: Higgs + 0 jets

- Large fixed order corrections. Vary with **P**T^{cut}
- FO α_s expansion describe large p_T^{cut} region Unreliable at small pr^{cut}
- Need $\alpha_s \ln \frac{p_T^{\text{cut}}}{m_H}$ resummation (parton shower)

Saba Zuberi

 \rightarrow H + X \rightarrow WW + X \rightarrow e⁺ ν e⁻ ν + X

Anastasiou, Dissertori, Stockli (2007)

Perturbative Accuracy

• Perturbative structure of hard interaction \otimes parton shower

- Parton Shower has LL (partial NLL) behaviour
- MC@NLO : Parton Shower and fixed NLO
- SCET H +0 jets calculation N²LL and N²LO (Berger, Marcantonini, Stewart, Tackmann, Waalewijn
- In MC want to Combine Hard Matrix Element NLO with Resummation (parton shower)

Geneva: Christian Bauer, Calvin Berggren, Nicholas Dunn, Andrew Hornig, Frank Tackmann, Jesse Thaler, Christopher Vermilion, Jonathan Walsh, SZ

Saba Zuberi

DPF Aug 9, 2011

Parts of the Monte Carlo

Hadronization/ UE: Model non-perturbative physics. Partons to hadrons

Saba Zuberi

DPF Aug 9, 2011

Challenge : Fixed Order and Parton Shower

	dΦn	$d\Phi_{n+1}$	$d\Phi_{n+2}$	$d\Phi_{n+3}$
At LO:	LO Matrix	Parton	Parton	Parton
	Element	Shower	Shower	Shower

• Beyond LO: N-body Phase Space \neq N-parton Phase Space

Make each weight well defined.

 Both Parton Shower and NLO ME include real emission corrections FO: exact n+1 body, PS collinear/soft limit.

Avoid Double Counting

Saba Zuberi

Current Approaches: Fixed Order \otimes Parton Shower

■ MC@NLO/ POWHEG (NLO for single jet multiplicity) ⊗ (LL Parton Shower)

→ Divergences: Define Subtraction
$$d\Phi_n \left[V_n + \int d\Phi_{n+1|n} S \right] + d\Phi_{n+1} \left[R_{n+1} - S \right]$$

Maps N-Body Phase Space to N-Parton Phase Space

[Frixione, Webber; Nason; Frixione, Nason, Oleari]

DPF Aug 9, 2011

Double Counting: Modify 1st emission of parton shower. Inclusive jet observable at NLO

Saba Zuberi

GENEVA The Geneva Approach

- Goal: Exclusive jet multiplicities all at NLO + resummation pp → H/W + 0, 1, 2 jets Start with e⁺e⁻ → 2, 3, 4 jets.
 Naively 4 jets NLO would require 2 jet to N³LO to be IR finite.
 Geneva: relevant pieces obtained from resummation
- Divergences: Map N-jet Phase Space to N-body Phase Space
- → Divide Phase Space : Resolution variable, N-jettiness T_N . Vetos > N jets. Well defined for any number of partonic final states.

Combining Higher Jet Multiplicities

- Previously: 2 jets at NLL+NLO and 3 jets at LO
- Now with Geneva have 2 jets at NLL+NLO and 3 jets at NLO
 Systematically extendable

First Results: 2 and 3 jets at NLO

• Consider variable sensitive to Φ_3 angular dependence.

Conclusions

- Remarkable experimental progress in understanding jet substructure. Increasingly sophisticated tools - promising future!
- Analytic tools play an important role in understanding algorithms, and interpreting MC
- Want event generators with best possible accuracy to connect theory and experiment
- A recent development: Can now combine several jet multiplicities at NLO with resummation/parton shower Expect $pp \rightarrow H + 0, 1 \text{ jets}, pp \rightarrow W + 0, 1 \text{ jets}$ soon.

Thank you

Saba Zuberi

DPF Aug 9, 2011

Back Up Slides

Saba Zuberi

DPF Aug 9, 2011

Systematic Improvement of MC Using EFT

For given N-jet

[Bauer, Fleming, Luke, Pirjol, Stewart]

• Small \mathcal{T}_2 : Use SCET to calculate resummed QCD distributions.

Systematically include: α_s^n matching and resum renormalization group $\alpha_s^n \ln^m(\mathcal{T}/Q)/\mathcal{T}$

$$\frac{d\sigma_{2}^{s}}{d\Omega \, d\mathcal{T}} = \frac{d\sigma_{B}}{d\Omega} H_{2}(E_{cm}^{2}, \mu) \int ds_{1} ds_{2} J_{1}(s_{1}, \mu) J_{2}(s_{2}, \mu) S_{2} \left(\mathcal{T} - \frac{s_{1}}{Q_{1}} - \frac{s_{2}}{Q_{2}}, \mu\right)$$
Hard Function: NLO
matrix elements Jet and Soft functions:
Collinear and soft limit
$$\mathbf{C} = \frac{d\sigma_{2}^{s}}{d\Omega \, d\mathcal{T}} = \frac{d\sigma_{2}^{s}}{d\Omega \, d\mathcal{T}} + \left[\frac{d\sigma_{2}^{QCD}}{d\Omega \, d\mathcal{T}} - \frac{d\sigma_{2}^{s}}{d\Omega \, d\mathcal{T}}\Big|_{exp}\right]$$
Resummed
NLL'= NLO FO+ $\alpha_{s}^{n} L^{2n-1}$

$$DPF Aug 9, 2011$$

• Distribute events according to:

Saba Zuberi

DPF Aug 9, 2011