Recent Heavy Ion Results with the ATLAS Detector at the LHC

Peter Steinberg, for the ATLAS Collaboration Brookhaven National Laboratory August 10, 2011
DPF 2011, Brown University

The ATLAS Detector

Run 169226, Event 379791
Time 2010-11-16 02:53:54 CET

ATLAS LIEXPERIMENT

Integrated luminosity for $2010 \mathrm{~Pb}+\mathrm{Pb}$ run

$10 \mu \mathrm{~b}^{-1}$ delivered, $9 \mu \mathrm{bb}^{-1}$ recorded by ATLAS, $\sim 8 \mu \mathrm{~b}^{-1} \mathrm{~W} /$ solenoid

Survey of basic properties of heavy ions @ LHC

- Global properties
- Multiplicity
- Collective flow (\& connection to correlations)
- How do high $\mathbf{p}_{\boldsymbol{T}}$ processes vary with centrality?
- Measurement of jet energy loss in hot, dense medium
- We have addressed this with a large sample of minimum bias events
- Triggered on combination of forward scintillators and zero degree calorimeters
- No high Dт triggers (jets, muons, etc.) used to select events

Centrality estimation

Energy sum in FCal ($3.2<|\boldsymbol{n}|<4.9$) compared with Glauber MC $\otimes p+p$ data Integrals of normalized data \& MC distributions agree to 2% above \& below range of fiducial $\Sigma E_{\text {T }}$ cut, consistent with sampling $f=100 \pm 2 \%$ of inelastic total cross section.

We calculate $<N_{\text {part }}>$ and $<N_{\text {coll }}>$ by binning in the simulated F Cal variable.

Charged particle multiplicity

Pixel "tracklets" in solenoid-off data, to measure down to $\mathrm{p}_{\mathrm{T}}>0$

Yield per participant pair increases by factor of two relative to RHIC, in agreement with ALICE measurement

> Similar centrality dependence to that found at RHIC (which itself was similar to top SPS energies):

> Confirmation of what appears to be a robust scaling feature in HI

Flow measurements

Elliptic flow at RHIC showed that spatial deformations in the initial overlap region closely correlated with momentum anisotropies:

ATLAS has new measurements with increased η dependence, and ta high p_{T}

With the high multiplicities \& large acceptance of ATLAS, we are also studying higher order components of the transverse flow

$$
E \frac{d^{3} N}{d p^{3}}=\frac{1}{p_{\mathrm{T}}} \frac{d^{3} N}{d \phi d p_{\mathrm{T}} d y}=\frac{1}{2 \pi p_{\mathrm{T}}} \frac{E}{p} \frac{d^{2} N}{d p_{\mathrm{T}} d \eta}\left(1+2 \sum_{n=1}^{\infty} v_{n} \cos \left[n\left(\phi-\Phi_{R P}\right)\right]\right)
$$

Do v_{n} directly reflect higher order deformations in initial state?

Higher modes should be more sensitive to viscous effects

Higher order moments vs. pт and centrality

Similar рт dependence for all flow coefficients. Weak centrality dependence observed for $\mathrm{V}_{3}-\mathrm{V}_{6}$ For the 5% most central events $\mathbf{v}_{\mathbf{2}}<\mathbf{v}_{\mathbf{3}}$

Two particle correlations

Two-particle correlations studied using discrete Fourier transform (DFT): $\mathrm{v}_{\mathrm{n}, \mathrm{n}} \sim \mathrm{v}_{\mathrm{n}}{ }^{2}$

$$
C(\Delta \phi)=\frac{\int N_{\mathrm{s}}(\Delta \phi, \Delta \eta) d \Delta \eta}{\int N_{\mathrm{m}}(\Delta \phi, \Delta \eta) d \Delta \eta} \quad v_{n, n}=\langle\cos (n \Delta \phi)\rangle=\frac{\sum_{m=1}^{N} \cos \left(n \Delta \phi_{m}\right) C\left(\Delta \phi_{m}\right)}{\sum_{m=1}^{N} C\left(\Delta \phi_{m}\right)}
$$

Complementary approach to event plane, to check consistency: at long range, no more jet \& resonance correlations (but non-trivial structure)

Reconstructing 2PC with event plane results

We find excellent agreement of DFT and EP results.
In fact, event plane measurements provide nearly-identical information as 2 particle correlations: "ridge" and "cone" at large $\Delta \eta$ should no longer be seen as "jet related" phenomena

Charged particle spectra

Corrected for efficiency, secondaries, fakes, resolution. Cutoff at 30 GeV due to small, systematic differences in track errors between data and MC (under investigation)

V_{2} at high P_{T}

At fixed centrality, the p_{T} dependence seems to scale (within large errors for PHENIX at high pT): differential parton energy loss?

Differential energy loss

W. Horowitz \& M. Gyulassy, QM2011

Quantitative comparisons between energy ioss calculations and v_{2} at high momentum, reflecting differential energy loss. Impressive agreement, despite predicting too-low RAA

Differential energy loss

Quantitative comparisons between energy loss calculations and v_{2} at high momentum, reflecting differential energy loss. Impressive agreement, despite predicting too-low RAA

Differential energy loss

In most central events, see discrepancies possibly arising from lack of fluctuations in theoretical calculation

Hard probes of heavy ion collisions

The LHC provides much higher rates of hard processes than provided previously: new opportunities for studying the microscopic properties of the medium

ATLAS published first observations of the centrality dependence of dijet asymmetries

ATLAS also first measured suppression of J / Ψ \& observed production of Z bosons

Phys. Rev. Lett. 105, 252303 (2010)

Hard probes: $\mathrm{N}_{\text {coll }}$ scaling from $\mathrm{W}^{ \pm}$production

W yields extracted using an empirical fit to single muon spectra: heavy flavor (adapted from $\mathrm{p}+\mathrm{p}$) and simulated PYTHIA W template

Pinned to most central events (RPc), $\sim N_{\text {coll }}$ scaling observed.

Jet reconstruction algorithms

Cacciari, Soyez, Salam (2008)

Out of large variety of algorithms, ATLAS uses "anti-kt": consistent jet shape (e.g. $\mathrm{R}=0.4$), widely used in HEP \& HI

Subtracting the underlying background

- ATLAS has excellent longitudinal segmentation
- Underlying event estimated and subtracted for each layer, and in 100 slices of $\Delta \eta=0.1$

```
H}\mp@subsup{T}{\mathrm{ sub }}{\mathrm{ cell }}=\mp@subsup{H}{T}{\mathrm{ cell }}-\mp@subsup{\rho}{}{\mathrm{ layer }}(\eta)\times\mp@subsup{A}{}{\mathrm{ cell }
```

- ρ is estimated event by event, averaged over full azimuth
- Remove jets from the averaging
- We use the anti- k_{t} algorithm to remove
 jets which have a large "core" region

$$
D=E_{T}^{\text {tower }} /\left\langle E_{T}^{\text {tower }}\right\rangle>5
$$

- Cross checked with a standard "sliding window" algorithm
- NB: No jets are removed - but only real jets will have a large energy above the background level!

Jet yields in HI

- First ATLAS results were an observation of asymmetric dijets, with a relative rate that increased with collision centrality
- Recent work involves more detailed background subtraction
- Elliptic flow
- Iterative method to remove bias of jet on background
- Systematic comparison of jets of different sizes
- $R=0.2$ without flow correction used. $E_{T}(R=0.2) \sim 0.7 \times E_{T}(R=0.4)$

- Extensive MC studies of jet performance
- jet energy scale (JES) and jet energy resolution (JER) based on PYTHIA dijets embedded into HIJING with a flow afterburner
- Centrality-dependent spectral unfolding

Jet Spectra R=0.4 \& R=0.2

$\mathrm{R}=0.2$

Scaled by $\mathrm{N}_{\text {coll }}$ (selected bins)

$R=0.2$

RcP vs. centrality in ET bins

Suppression characterized
by central/peripheral ratio (pinned on 60-80\%)

$$
R_{\mathrm{CP}}=\frac{\frac{1}{N_{\text {coll }}^{\text {cent }}} E \frac{\mathrm{~d}^{3} N^{\text {cent }}}{\mathrm{d} p^{3}}}{\frac{1}{N_{\text {coll }}{ }^{\text {periph }}} E \frac{\mathrm{~d}^{3} N^{\text {periph }}}{\mathrm{d} p^{3}}} . \quad \text { tends to } \sim 0.5
$$

Rcp vs. ET in centrality bins

No appreciable ET dependence of R_{CP} for $\mathrm{R}=0.4 \& 0.2$

Fragmentation Functions

p_{T} cut to suppress underlying event, and background subtracted using region outside jet cone
Yellow bands represent uncertainties from background subtraction

No strong modification of fragmentation functions
between peripheral and central:
surprising in a radiative energy loss scenario?

Charged particle $R_{C P}$

Strong suppression seen in more central events via charged Rcp No η dependence observed

Centrality dependence of charged hadron Rcp

Rcp(pt>20 GeV) shows systematic suppression, very similar to jets (but R ${ }_{\mathrm{CP}}$ still rising with pt at 30 GeV)
Pseudorapidity dependence dominated by statistics in 60-80\%

The first ATLAS asymmetry measurement

Asymmetry defined as:
$A_{\mathrm{J}}=\frac{E_{T 1}-E_{T 2}}{E_{T 1}+E_{T 2}}$
for $\Delta \phi>\pi / 2$
$E_{T 1}>100 \mathrm{GeV}$
$E_{T 2}>25 \mathrm{GeV}$

First measurements: broad asymmetry distribution, back-to-back angular distribution

Asymmetry, updated

New results incorporate a flow-sensitive background, better control of jet energy, higher statistics

Asymmetry, updated

Asymmetry results robust, persist for $\mathrm{R}=0.2$ jets, with much less sensitivity to background fluctuations

Asymmetry, updated

Dijets are produced back-to-back at all centralities, even when asymmetry distribution has been modified.

Modeling jet asymmetry

Young, Schenke, Gale, Jeon (2011 v2)

Theory community is already making use of this data.
MARTINI (jet quenching, radiative and collisions E-loss) using MUSIC (hydro) background
can model salient features of asymmetry data: "flat" AJ distribution and peaked $\Delta \phi$ distribution

Conclusions

- Global observables
- Centrality dependence of inclusive multiplicity scales with beam energy
- Transverse momentum dependence of v_{2} scales out to highest p_{T} (modulo large errors at RHIC).
- New comparisons with energy loss calculations.
- Detailed study of higher order flow coefficients challenges ridge \& cone interpretation. New information to help constrain viscous hydro models.
- High p_{T} observables
- $\mathrm{W}^{ \pm}$production consistent with simple scaling with $\mathrm{N}_{\text {coll }}$
- Jet production systematic suppressed by a factor of ~ 2 relative to peripheral collision.
- Charged hadron Rcp measured out to 30 GeV : centrality dependence of suppression similar to jets
- Asymmetries robust, and being successfully modeled in recent calculations

Plans

- Looking forward to a productive 2011
- Quark Matter publications imminent
- More systematic studies of jets, high pt charged particles, heavy flavor
- Electromagnetic processes (especially photons)
- 2011 LHC Pb+Pb run expected to begin mid-November
- Higher luminosities, requiring careful triggering on high P_{T} jets, muons and electromagnetic processes
- Will allow more detailed studies of hard processes \& quarkonia with improved statistics
- Exciting time for HI physics: two machines and 5 experiments!

Heavy ion collisions: the first 3×10^{-23} seconds

Hydrodynamic Evolution

Initial
Nuclei

Energy Stopping \& Hard Collisions

\qquad

Hadron

The goal of heavy ion physics is to "rewind the movie" to study the hot, dense medium formed in the early moments

Run 168875, Event 1577540
Time 2010-11-10 01:27:38 CET

Minimum bias triggering

- The 2010 data set was taken with a minimum bias trigger configuration
- Coincidence of minimum bias trigger scintillators (2.1<|n|<3.9)
- Coincidence of neutrons in Zero Degree Calorimeters
- Offline requirements of
- MBTS time difference $|\Delta t|<3$ ns
- Coincidence in ZDC
- Reconstructed vertex in Inner Detector
- Efficient rejection of
- Beam-gas events
- Inelastic photonuclear events
- No physics triggers (e.g. jets, muons) used in event selection

Underlying event fluctuations

Detailed look at variable-size square patches in data and MC. After 15% adjustment of $\mathrm{FCal} \Sigma \mathrm{E}_{\mathrm{T}}$ scale, good agreement over nearly full centrality range

Elliptic flow measurements

ATLAS forward calorimeter used for event plane determination. Resolution correction factor for subevents $\sim 75-85 \%$ in mid-central events. Tested in subregions of calorimeter acceptance.

Higher order moments vs. pt and centrality

Transverse momentum dependence of V_{2}

Centrality and p_{T} dependence of v_{2} :
Rapid rise up to $3-4 \mathrm{GeV}$, less rapid decrease to $8-9 \mathrm{GeV}$, and then weak рт dependence out to 20 GeV .

Pseudorapidity dependence

