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of studying transverse momentum distributions at hadron colliders. We outline future direc-

tions for the study of transverse momentum resummation within the effective field theory

framework.

Our paper is organized as follows. In Section II we pedagogically review the factorization

theorem derived in our previous work [19] and present its extension to electroweak gauge

boson production. The details of this extension are presented in appendix A. All analytic

results for the matching coefficients, iBFs and iSFs required for phenomenology to NLL and

partial NNLL accuracy are presented in Section III. The structure of the RG running in

the effective theory, which resums large logarithms of the form ln (M/pT ), is discussed in

Section IV. Simple analytic expressions for the resummed cross sections valid through NLL

are shown in Section V. We discuss the relationship between the various quantities appearing

in the SCET approach with those appearing in the CSS formulation in section VI, and show

the consistency of the methods through NLL. We discuss what further work must be done

to establish the relationship to higher orders. Numerical results for Higgs production and Z

boson production are shown in Section VII, and the agreement with the Tevatron data for

Z production is demonstrated. Finally, we conclude in Section VIII.

II. REVIEW OF THE FACTORIZATION THEOREM

We begin by summarizing the content and derivation of our previously-studied factoriza-

tion theorem [19], and present its extension to the case of electroweak gauge boson produc-

tion. The details of this extension are presented in appendix A. The derivation and result

of our factorization analysis are shown schematically below:

d2σ

dp2TdY
∼

∫
PS |MQCD|2 (1)

↓ (match QCD to SCETpT )

∼
∫

PS |C ⊗ 〈OSCET 〉|2

↓ (SCET soft-collinear decoupling)

∼ H ⊗ Bn ⊗ Bn̄ ⊗ S

↓ (zero-bin and soft subtraction equivalence)

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1

↓ (match SCETpT to SCETΛQCD)

∼ H ⊗
[
In ⊗ In̄ ⊗ S−1

]
︸ ︷︷ ︸

G

⊗fi ⊗ fj.

• In the first stage of the analysis, full QCD is matched onto an effective field theory

which contains fields with the following momentum scalings:

pn ∼ M(η2, 1, η), pn̄ ∼ M(1, η2, η), ps ∼ M(η, η, η), η ∼ pT
M

,
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of studying transverse momentum distributions at hadron colliders. We outline future direc-

tions for the study of transverse momentum resummation within the effective field theory

framework.

Our paper is organized as follows. In Section II we pedagogically review the factorization

theorem derived in our previous work [19] and present its extension to electroweak gauge

boson production. The details of this extension are presented in appendix A. All analytic

results for the matching coefficients, iBFs and iSFs required for phenomenology to NLL and

partial NNLL accuracy are presented in Section III. The structure of the RG running in

the effective theory, which resums large logarithms of the form ln (M/pT ), is discussed in

Section IV. Simple analytic expressions for the resummed cross sections valid through NLL

are shown in Section V. We discuss the relationship between the various quantities appearing

in the SCET approach with those appearing in the CSS formulation in section VI, and show

the consistency of the methods through NLL. We discuss what further work must be done

to establish the relationship to higher orders. Numerical results for Higgs production and Z

boson production are shown in Section VII, and the agreement with the Tevatron data for

Z production is demonstrated. Finally, we conclude in Section VIII.

II. REVIEW OF THE FACTORIZATION THEOREM

We begin by summarizing the content and derivation of our previously-studied factoriza-

tion theorem [19], and present its extension to the case of electroweak gauge boson produc-

tion. The details of this extension are presented in appendix A. The derivation and result

of our factorization analysis are shown schematically below:

d2σ

dp2TdY
∼

∫
PS |MQCD|2 (1)

↓ (match QCD to SCETpT )

∼
∫

PS |C ⊗ 〈OSCET 〉|2

↓ (SCET soft-collinear decoupling)

∼ H ⊗ Bn ⊗ Bn̄ ⊗ S

↓ (zero-bin and soft subtraction equivalence)

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1

↓ (match SCETpT to SCETΛQCD)

∼ H ⊗
[
In ⊗ In̄ ⊗ S−1

]
︸ ︷︷ ︸

G

⊗fi ⊗ fj.

• In the first stage of the analysis, full QCD is matched onto an effective field theory

which contains fields with the following momentum scalings:

pn ∼ M(η2, 1, η), pn̄ ∼ M(1, η2, η), ps ∼ M(η, η, η), η ∼ pT
M

,
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long range Weak Equivalence Principle (WEP) violating force between Dark Matter

(DM) particles, mediated by an ultralight scalar, is tightly constrained by galactic

dynamics and large scale structure formation. We examine the implications of such

a ”dark force” for several terrestrial experiments, including Eotvos tests of the WEP,

direct-detection DM searches, and collider studies. The presence of a dark force implies

a non-vanishing effect in Eotvos tests that could be probed by current and future

experiments depending on the DM model. For scalar singlet DM scenarios, a dark

force of astrophysically relevant magnitude is ruled out in large regions of parameter

• Transverse nucleon structure
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Figure 3: The combined normalized differential cross section as a function of pZT for (a) the range pZT < 30 GeV and (b) the full range
compared to the predictions of Resbos, Pythia, and Fewz at O(α2

S). The error bars shown include statistical and systematic uncertainties.

For the combination, the ee (µµ) channel contributes with an integrated luminosity of 35 pb−1 (40 pb−1). At low pZT the Fewz prediction
diverges and is omitted.
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Figure 4: Ratios of the combined data and various predictions over the Resbos prediction for the normalized differential cross section as
a function of pZT : (a) Fewz predictions at O(αS) and O(α2

S); (b) predictions from the generators Pythia, Mc@nlo, Powheg, Alpgen and
Sherpa. The Fewz predictions are shown with combined scale, αS, and PDF uncertainties. The data points are shown with combined
statistical and systematic uncertainty. At low pZT the O(αS) and O(α2

S) predictions of Fewz diverge and are omitted.
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Low pT Region

• Resummation has also been studied recently using the EFT 
approach.

Large Logarithms spoil 
perturbative convergence

• Resummation has been studied in great detail in the Collins-
Soper-Sterman formalism.
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pp→ h + X (1)

αs

π
(2)

I. INTRODUCTION

LSCET = L(0)
SCET + L(1)

SCET + L(2)
SCET + · · · (3)

L(0)
SCET = L(0)

coll. + L(0)
soft (4)

phc ∼ pc + ps ∼ Q(η2, 1, η) + Q(η, η, η) ∼ Q(η, 1, η) (5)

p2
hc ∼ Q2η # p2

c , p
2
s (6)

(Davies, Stirling; Arnold, Kauffman; Berger, Qiu; Ellis, Veseli, Ross, Webber; Brock, Ladinsky Landry, 
Nadolsky; Yuan; Fai, Zhang; Catani, Emilio, Trentadue; Hinchliffe, Novae; Florian, Grazzini, Cherdnikov, 

Stefanis; Belitsky, Ji,.... )

(Idilbi, Ji, Yuan; Gao, Li, Liu; SM, Petriello; Becher, Neubert)



CSS Formalism

23

B. Comparison with CSS approach

The classic QCD analysis of resummation of low transverse momentum logarithms ex-

presses the cross section in the low pT region as [31]

d2σ

dpT dY
= σ0

∫
d2b⊥
(2π)2

e−i!pT ·!b⊥
∑

a,b

[
Ca ⊗ fa/P

]
(xA, b0/b⊥)

[
Cb ⊗ fb/P

]
(xB, b0/b⊥)

× exp

{∫ Q̂2

b20/b
2
⊥

dµ2

µ2

[
ln
Q̂2

µ2
A(αs(µ

2)) +B(αs(µ
2))

]}
. (55)

The sum is over parton species labeled by a, b, while xA,B denote the equivalent parton

fractions xA,B = e±Ymh/Q respectively. The functions A, B, and C have perturbative

expansions in αs, while b0 is an arbitrary constant chosen for computational convenience.

One significant difference between this result and our approach outlined in the previous

section is the appearance of the Landau pole of the strong coupling constant when µ2 = 0

in the exponent. To deal with this singularity, several modifications of this formula are

employed, including a deformation of the b⊥ integration contour [36, 75, 76] and the intro-

duction of a phenomenological model to cut off the b⊥ → ∞ region [77]. In our approach

the most natural choice for the scale which controls the lower limit of the RG evolution

is µL = pT . This can also be understood by noting that the perturbative function Gij is

independent of the impact parameter, in both the impact-parameter and momentum-space

formulations of the factorization theorem, and depends on pT and µ and no other dimen-

sionful scales. Furthermore from the structure of the factorization theorem, we see that the

logarithms of mh/pT are summed by the RG evolution of the hard coefficient H(x1, x2Q2, µ)

which multiplies the function Gij and also has no reference to an impact parameter. In

the effective theory, non-perturbative effects such as those indicated by the appearance of

the Landau pole are encoded in operators suppressed by ΛQCD/pT . When pT ∼ ΛQCD,

the expansion in this parameter breaks down, and a model of Gij fit to data can be used

analogous to the standard approach. However, no reference to a non-pertubative function

is needed above ΛQCD. Previous comparisons of b-space and momentums-space resumma-

tion formalisms have indicated numerical agreement between the obtained results down to

pT ∼ few GeV [78]. At this stage, power-suppressed operators presumably give important

contributions. The use of SCET allows such effects to be studied in a systematic way. The

avoidance of the Landau singularity also simplifies the matching of the resummed result to

the fixed-order expression. In the usual approach, a large cancellation between the resummed

component and the fixed-order QCD contribution occurs, leading to potential instabilities

in the matched distribution. This cancellation typically occurs numerically because of the

introduction of a non-perturbative model for the large b⊥ region. Since it can be arranged

analytically if the b⊥ integrals can be done, avoidance of the Landau pole is useful for this

purpose also (we note that the matching to fixed-order QCD results can be made smoother

Landau Pole

• Landau pole appears for any value of pT.

• Landau pole must be treated with some prescription.

• Difficulties can arise in smoothly matching 
the resummed low pT cross-section with the 
fixed order result at large pT.

(Collins, Soper, Sterman; Kulesza, Laenen,Vogelsang; Qiu, Zhang,... )

Figure 8: NLL+LO spectra for different choices of the resummation scale Q at fixed µR =
µF = MH .

The numerical results presented so far refer to the value MH = 125 GeV of the Higgs boson
mass. By varying MH , the typical features of the results are unchanged, the main difference
being the decrease of the cross section as MH increases. In Fig. 10 we plot the NNLL+NLO
spectra, normalized to the total cross section, for different values of the Higgs boson mass, MH =
125, 165, 200 and 300 GeV. For reference, the corresponding values of the NNLO total cross sections
are σNNLO = 38.43, 24.37, 17.78 and 10.03 pb. As expected, the qT distribution becomes harder
as MH increases. The average value, 〈qT 〉, of the transverse momentum increases almost linearly
with increasing MH , and it is very roughly approximated by an effective lowest-order expression,
〈qT 〉 ∼ CAαS(M2

H) MH .

The quantitative predictions presented up to now are obtained in a purely perturbative frame-
work. It is known (see e.g. Ref. [29] and references therein) that the transverse-momentum
distribution is affected by non-perturbative (NP) effects, which become important as qT becomes
small. In impact parameter space, these effects are associated to the large-b region. In our per-
turbative study the integral over the impact parameter turns out to be dominated by the region
where b∼< 0.1–0.2 GeV−1, larger values of b being strongly suppressed by the resummation of the
logarithmic terms in the gluon form factor. Thus we do not expect particularly-large NP effects
in the case of Higgs boson production at the LHC. This expectation is in agreement with the
findings in Refs. [40–44].

A customary way of modelling NP effects in the case of DY lepton-pair production is to intro-
duce an NP transverse-momentum smearing of the distribution. This is implemented by multiply-
ing the b-space perturbative form factor by an NP form factor. Several different parametrizations
of the NP form factor are available in the literature [63, 74–77]; the corresponding NP parameters

32

(Bozzi, Catani, de Florian, Grazzini )
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EFT framework 
• Low pT region dominated by soft and collinear emissions 
from initial state:

5

theorem in SCETpT takes the form

d2σ

dp2T dY
=

π

4(N2
c − 1)2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
d2b⊥
(2π)2

e−i!k⊥h ·!b⊥

× δ

[
p−h − eY

√
p2T +m2

h

]
δ

[
p+h − e−Y

√
p2T +m2

h

]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

]

×
∫ 1

0

dx1

∫ 1

0

dx2

∫
dt+n

∫
dt−n̄H(x1x2Q

2, µQ;µT ) B̃
αβ
n (x1, t

+
n , b⊥, µT ) B̃n̄αβ(x2, t

−
n̄ , b⊥, µT )

× S−1(x1Q− p−h − t−n̄
Q
, x2Q− p+h − t+n

Q
, b⊥, µT ),

(4)

where the collinear functions B̃αβ
n,n̄ are the Impact-parameter Beam Functions(iBFs). The

iBFs B̃αβ
n,n̄ are extensions of the beam functions that appear in [40, 41] and reduce to them for

b⊥ = 0 after contraction of the transverse indices α and β. The beam functions of Ref. [41]

were shown to have wide applicability to the analysis of observables at the LHC. The iBFs

are proton matrix elements evaluated at the scale µT ∼ pT . The iBFs are matched onto the

standard QCD PDFs by performing an OPE in ΛQCD/pT and the logarithms of ΛQCD/pT
are summed via the standard DGLAP equations used to evaluate the PDFs at the scale

µT ∼ pT . This is shown schematically in Fig. 1 and gives the final form of the factorization

theorem shown in Eqs.(1) and (2) where the collinear functions Iαβ
n,n̄;g,i are just the iBF to

PDF matching coefficients.

While the factorization and resummation of transverse-momentum distributions has been

studied extensively in the QCD literature, and SCET analyses [42, 43] have been performed

in the past, our analysis contains several interesting differences that we believe are worth

further investigating. A summary of the main points of this paper is given below:

1. We derive a factorization theorem for the Higgs transverse momentum and rapidity

distributions using effective field theory methods. A clear separation of the dynamics

associated with the scales Q̂ ∼ mh $ pT $ ΛQCD into perturbative Wilson coefficients

and standard QCD PDFs is achieved. Large logarithms of ratios of the relevant scales

are summed using RG equations in the effective theories. Power corrections in pT/mh

and ΛQCD/pT can be systematically derived by going to higher orders in the power

counting of the effective theories.

2. In addition to the factorization of the scales mh $ pT $ ΛQCD, the perturbative

physics of the pT scale is further factorized into an iSF S−1 and two distinct collinear

functions Iαβ
n;gi and Iαβ

n̄;gi. This additional factorization simplifies the structure of higher

order perturbative corrections at the pT scale. They can now be obtained through

higher order computations of the simpler perturbative functions S−1, Iαβ
n;gi and Iαβ

n̄;gi.

3. The factorization in SCET naturally occurs in terms of purely collinear PDFs and

soft functions. The purely collinear PDFs differ from the standard QCD PDFs by

• Hierarchy of scales suggests EFT approach with well defined 
power counting.

pT=0 finite pT finite pT

26

negative results [15] in the standard approach, does not occur in this effective field theory

approach. This allows the matching scale µQ to be varied throughout a range sufficient to

use it as an estimator of the theoretical uncertainty.

One aspect of transverse resummation in SCET that requires further study is the treat-

ment of the non-perturbative region pT ∼ ΛQCD. In our analysis, the transverse momentum

function G becomes non-perturbative, and must be modeled. The onset of this region can

be seen in the plot by the large scale variation at low pT , which is caused by evaluating

αs(µT ) ∼ αs(ΛQCD). Since this object has a non-pertubative definition in terms of operator

matrix elements and a well-defined running, it is reasonable to extract this function using

available data. We defer this to later work, and in our plot for the Higgs pT distribution we

simply stop our plot at a lower value of pT = 3 GeV.

In Fig. 5 we plot our prediction for the Z-boson pT distribution at the Tevatron Run 1,

and compare to data from CDF [24] and D0 [23]. We study the spectrum down to pT = 1.75

GeV. The agreement with the data is excellent over the entire range. The low pT version

of this data can eventually be used to constrain the non-perturbative TMF that appears in

SCET, as is done in the CSS approach [42].

VIII. CONCLUSIONS

In this manuscript we have extended our analysis of transverse momentum distributions

using the Soft-Collinear Effective Theory(SCET) to account for both electroweak and Higgs

boson production at low pT in hadronic collisions. We have derived a factorization theorem

for the transverse momentum distribution for the production of electroweak gauge boson

production, and have provided all necessary analytic expressions to perform resummation

of low-pT distributions for any color-neutral particles to next-to-leading-logarithmic accu-

racy. Our effective field theory approach is free of the Landau pole that appears in the

standard approach even for perturbative values of pT . We thus have a numerically stable

matching to the fixed-order QCD result, leading to a smooth transition from the low-pT
resummation region to the intermediate and high pT region without the need for a matching

prescription. For perturbative values of pT , our approach predicts the transverse momentum

distribution entirely in terms of field-theoretically derived perturbative functions and stan-

dard initial state PDFs. For non-perturbative values of pT , an additional non-perturbative

Transverse Momentum Function (TMF) appears with a rigorous field-theoretic definition

and computable anomalous dimension.

We have presented the first numerical predictions for pT spectra arising from SCET for

Higgs and Z-boson production, and for Z boson production have shown an initial numerical

comparison with Tevatron data. The agreement with data is excellent over the kinematic

range currently covered by our factorization formula, indicating that SCET will provide a

useful framework for the analysis and interpretation of hadron collider distributions.

,

11

A. QCD to SCETpT

As already mentioned, the perturbative expansion in QCD for the transverse momentum

spectrum of the Higgs contains logarithms of mh/pT . In the low transverse momentum

region ΛQCD ! pT ! mh, these logarithms become large and must be resummed to all

orders in perturbation theory. In the effective theory formulation, this is done by matching

QCD onto the effective theory SCETpT , which describes the dynamics of the degrees of

freedom recoiling against the Higgs, and solving the RG equations of the effective theory

operators. The effective theory SCETpT is formulated in terms of collinear and soft modes

with momentum scalings

pn ∼ mh(η
2, 1, η), pn̄ ∼ mh(1, η

2, η), ps ∼ mh(η, η, η), η ∼ pT
mh

,

(15)

where pn, pn̄, and ps denote typical momenta for the n-collinear, n̄-collinear and soft modes

respectively. The effective theory has a well defined power counting in the parameter η

and has distinct quark and gluon fields for each of these modes. The gluon fields Aµ
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n̄,p̃n̄(x), and Aµ

s,q̃(x) destroy n-collinear, n̄-collinear, and soft gluons respectively. The pres-

ence of distinct collinear and soft gluons requires the theory to be invariant under collinear

and soft gauge transformations [38, 69]. The momenta of the effective theory modes are

separated into label p̃ and residual k parts

pµ = p̃µ + kµ, p̃µ ∼ mh(1, η), kµ ∼ mhη
2. (16)

Derivative operators are similarly separated into label and residual operators so that, for

example, a derivative acting on the n-collinear field takes the form
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such that the label operators act on the label momentum subscripts
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that such a field with label momenta can be written explicitly as a Fourier transform of a

standard quantum field. As an example, a field with no dependence on residual coordinates

can be expressed as

Xp̃n(0) =
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As already discussed, after integrating out the top quark, the gg → h process is mediated

by the effective QCD operator

OQCD = g2 h Tr
[
GµνG

µν
]
= −4v

c
Lmt , (20)
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Figure 2: (a) Physics described by the beam function. Starting at a low hadronic scale µΛ the proton
is described by a PDF f . At the scale µB, the proton is probed by measuring radiation in the final
state, identifying a parton j described by fj(ξ, µB). Above µB , the initial state becomes an incoming
jet described by Iij(t, x/ξ, µ) for an off-shell parton i with spacelike virtuality −t, which enters the
hard interaction at µH . (b) Schematic picture of the final state for isolated Drell-Yan.

virtuality t′ of the parton i, while leaving its identity and momentum fraction unchanged,

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γiB(t− t′, µ)Bi(t

′, x, µ) . (1.3)

This evolution stops at the hard scale µH , where the off-shell parton i enters the hard partonic

collision. For µ ≥ µB the initial state is also sensitive to soft radiation as shown by the orange

wider angle gluons in Fig. 2(a). For cases where the beam function description suffices this

soft radiation eikonalizes, and the corresponding soft Wilson line is one component of the soft

function S that appears in the factorized cross section.

In general, a beam function combines the PDF with a description of all energetic initial-

state radiation that is collinear to the incoming proton direction up to t # Q2. The parton’s

virtuality t effectively measures the transverse spread of the radiation around the beam axis.

The specific type of beam function may depend on details of the measurements, much as

how jet functions depend on the algorithm used to identify radiation in the jet [7, 8, 9].

Our discussion here will focus on the most inclusive beam function, which probes t through

the measurement of hadrons in the entire forward hemisphere corresponding to the proton’s

direction. The utility of beam functions is that for a class of cross sections they provide a

universal description of initial-state radiation that does not need to be modeled or computed

on a case by case basis.

An example of a factorization theorem that involves beam functions is the “isolated Drell-

Yan” process, pp → X#+#−. Here, as depicted in Fig. 2(b), X is allowed to contain forward

energetic radiation in jets about the beam axis, but only soft wide-angle radiation with no

central jets. The presence of energetic forward radiation is an unavoidable consequence for

processes involving generic parton momentum fractions x that are away from the threshold

– 4 –

Initial State jet
of pT radiation

pT=0 finite pT finite pT

• Colliding parton is part of initial state pT radiation beam jet:

(Stewart, Tackmann, Waalewijin; Fleming, Leibovich, Mehen)

• Soft recoil radiation is restricted. Gives rise to a soft function.

(SM,Petriello)
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here
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Figure 2: (a) Physics described by the beam function. Starting at a low hadronic scale µΛ the proton
is described by a PDF f . At the scale µB, the proton is probed by measuring radiation in the final
state, identifying a parton j described by fj(ξ, µB). Above µB , the initial state becomes an incoming
jet described by Iij(t, x/ξ, µ) for an off-shell parton i with spacelike virtuality −t, which enters the
hard interaction at µH . (b) Schematic picture of the final state for isolated Drell-Yan.
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In general, a beam function combines the PDF with a description of all energetic initial-

state radiation that is collinear to the incoming proton direction up to t # Q2. The parton’s

virtuality t effectively measures the transverse spread of the radiation around the beam axis.

The specific type of beam function may depend on details of the measurements, much as

how jet functions depend on the algorithm used to identify radiation in the jet [7, 8, 9].

Our discussion here will focus on the most inclusive beam function, which probes t through

the measurement of hadrons in the entire forward hemisphere corresponding to the proton’s

direction. The utility of beam functions is that for a class of cross sections they provide a

universal description of initial-state radiation that does not need to be modeled or computed

on a case by case basis.
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Yan” process, pp → X#+#−. Here, as depicted in Fig. 2(b), X is allowed to contain forward
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ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
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property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.
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scaleless and vanish in dimensional regularization. The Wilson coefficient can therefore be

extracted directly from the finite part of the full QCD result in dimensional regularization

and is well known in the literature [15, 79]. Through next-to-leading order, it is given by

C(n̄ · p̂1n · p̂2, µ) =
c n̄ · p̂1n · p̂2

v

{
1 +

αs

4π
CA

[
11

2
+

π2

6
− ln2

(
− n̄ · p̂1n · p̂2

µ2

)]}
, (58)

where the first term is just the result of tree level matching quoted earlier in Eq. (28) and

we have used the property C(ω1,ω2, µ) = C(ω1ω2, µ) to write the LHS above. We note that

the 11/2 in the next-to-leading order expression arises from integrating out the top quark

loop to produce an effective Higgs-glue vertex. The hard Wilson coefficient H(x1x2Q2, µ) =

|C(x1x2Q2, µ)|2 appearing in the factorization theorem can be obtained from the above

equation at next-to-leading order.

B. Calculation of the iBF

In this section we present results for the calculation of the iBFs as defined in Eqs. (36),

(33), and (42). We compute the n-collinear iBF by inserting a complete set of states as

B̃αβ
n (x1, t

+
n , b⊥, µ) =

∫
db−

4π
e

i
2

t+n b−
Q

∑

initial pols.

∑

Xn

〈p1|
[
gBA

1n⊥β(b
−, b⊥)|Xn〉

× 〈Xn|δ(P̄ − x1n̄ · p1)gBA
1n⊥α(0)

]
|p1〉,

(59)

and then computing the product of matrix elements. Recall that B̃αβ
n denotes the iBF

without a zero-bin subtraction as opposed to Bαβ
n which is defined with a zero-bin subtrac-

tion. An analogous expression exists for the n̄-collinear iBF. In this section we focus on the

n-collinear iBF, since the n̄-collinear iBF can be calculated in an analogous fashion. The

lowest order result for the iBF is obtained by choosing |Xn〉 = |0〉 and computing the tree

30

C. Soft function: real emission

In this section we give results for the computation of the iSF which was defined earlier as

S−1(ω̃1, ω̃2, b⊥, µ) =

∫
db+db−

16π2
eib

+ω̃1/2eib
−ω̃2/2S−1(b+, b−, b⊥), (75)

where the position space soft function that appears on the RHS above is defined in Eq. (33).

The iSF in the factorization theorem, before doing the Higgs phase space integrals, has the

arguments

ω̃1 = ω1 − p−H − k−
n̄ , ω̃2 = ω2 − p+H − k+

n , (76)

as seen in Eq. (47). For convenience we introduce the notation

t+n = Qk+
n , t−n̄ = Qk−

n̄ , tmax
n = Q(ω2 − p+H), tmax

n̄ = Q(ω1 − p−H), (77)

which we will often use in this section. We compute the iSF by inserting a complete set of

soft states in the position space soft function as

S(b, µ) =
∑

Xs

〈0|T̄
[
Tr

(
Sn̄T

DY †
n̄SnT

CS†
n

)
(b)

]
|Xs〉〈Xs|T

[
Tr

(
SnT

CS†
nSn̄T

DS†
n̄

)
(0)

]
|0〉,

(78)

and compute the product of matrix elements and use these results in Eq. (75). Through

next-to-leading order in the QCD coupling, the position space inverse soft function S−1(b)

that appears in Eq. (75) is obtained by inserting an overall minus sign in theO(αs) correction

to the soft function S(b) of Eq. (78).

The lowest order result for the iSF comes from choosing |Xs〉 = |0〉 and computing the

tree level result which gives

S−1(0)(tmax
n − t+n , t

max
n̄ − t−n̄ , b⊥, µ) =

N2
c − 1

4
Q2 δ(tmax

n̄ − t−n̄ )δ(t
max
n − t+n ). (79)

Higher order corrections to the term with |Xs〉 = |0〉 corresponds to virtual graphs with no

real emissions in the final state. At one loop, the virtual corrections correspond to the first

diagram and its permutations in Fig. 5 which gives the result

S−1V (1)(ω1 − p−h ,ω2 − p+h , b⊥) = −SV (1)(ω1 − p−h ,ω2 − p+h , b⊥)

= S(0)(ω1 − p−h ,ω2 − p+h , b⊥)(−2ig2CA)Is

(80)

where Is is the scaleless integral

Is = 2

∫
dd%

(2π)d
1

(%2 + i0) (n̄ · %− i0) (n · %+ i0)
, (81)

• iBF:

• Soft function:
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FIG. 4: The diagrams contributing to the next-to-leading order jet function. The purple cross
denotes the collinear Wilson lines associated with the B⊥ field. We note that the momentum p1 is
incoming on the left-hand side of the cut and outgoing on the right.

scaleless and vanish in dimensional regularization. The Wilson coefficient can therefore be

extracted directly from the finite part of the full QCD result in dimensional regularization

and is well known in the literature [15, 79]. Through next-to-leading order, it is given by

C(n̄ · p̂1n · p̂2, µ) =
c n̄ · p̂1n · p̂2

v

{
1 +

αs

4π
CA

[
11

2
+

π2

6
− ln2

(
− n̄ · p̂1n · p̂2

µ2

)]}
, (58)

where the first term is just the result of tree level matching quoted earlier in Eq. (28) and

we have used the property C(ω1,ω2, µ) = C(ω1ω2, µ) to write the LHS above. We note that

the 11/2 in the next-to-leading order expression arises from integrating out the top quark

loop to produce an effective Higgs-glue vertex. The hard Wilson coefficient H(x1x2Q2, µ) =

|C(x1x2Q2, µ)|2 appearing in the factorization theorem can be obtained from the above

equation at next-to-leading order.

B. Calculation of the iBF

In this section we present results for the calculation of the iBFs as defined in Eqs. (36),

(33), and (42). We compute the n-collinear iBF by inserting a complete set of states as

B̃αβ
n (x1, t

+
n , b⊥, µ) =

∫
db−

4π
e

i
2

t+n b−
Q

∑

initial pols.

∑

Xn

〈p1|
[
gBA

1n⊥β(b
−, b⊥)|Xn〉

× 〈Xn|δ(P̄ − x1n̄ · p1)gBA
1n⊥α(0)

]
|p1〉,

(59)

and then computing the product of matrix elements. Recall that B̃αβ
n denotes the iBF

without a zero-bin subtraction as opposed to Bαβ
n which is defined with a zero-bin subtrac-

tion. An analogous expression exists for the n̄-collinear iBF. In this section we focus on the

n-collinear iBF, since the n̄-collinear iBF can be calculated in an analogous fashion. The

lowest order result for the iBF is obtained by choosing |Xn〉 = |0〉 and computing the tree

31

FIG. 5: Example diagrams contributing to the next-to-leading order iSF. The four lines at each
vertex schematically denote the soft Wilson lines associated appearing in the definition of the iSF
S−1. The diagram on the left corresponds to a virtual correction to the iSF and the diagram on
the right corresponds to a real emission as seen by the cut through the gluon.

where Is is the scaleless integral

Is = 2

∫
dd!

(2π)d
1

(!2 + i0) (n̄ · !− i0) (n · !+ i0)
, (81)

and vanishes in pure dimensional regularization.

Next we compute the contribution to the iSF from the real emission of an soft gluon

corresponding to choosing |Xs〉 = |k〉 for a gluon of momentum k, as shown in the second

diagram of Fig. 5. Explicit computation gives

S−1R(1)(ω̃1, ω̃2, b⊥, µ) = −SR(1)(ω̃1, ω̃2, b⊥, µ)

= −N2
c − 1

4

g2µ2εCA

(2π)d−1

∫
db+db−

16π2
eib

+ω̃1/2eib
−ω̃2/2

∫
ddk δ(k2)

4

k+k− e
−ib·k.

(82)

Switching to an MS definition of µ and performing integrals as before, we can derive the

following expression:

S−1R(1)(ω̃1, ω̃2, b⊥, µ) = −N2
c − 1

4

αsCA

π

eεγ

Γ(1− ε)
µ2εω̃−1−ε

1 ω̃−1−ε
2 0F1

(
1− ε;−b2⊥ω̃1ω̃2

4

)
.

(83)

The expansion in ε proceeds identically to that for the iBF. Defining the expansion

S−1R(1)(tmax
n − t+n , t

max
n̄ − t−n̄ , b⊥, µ) =

S2

ε2
+

S1

ε
+ S0, (84)
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here

iBFs are proton matrix elements
and sensitive to the 

non-perturbative scale

• The iBFs are matched onto PDFs to separate the perturbative 
and non-perturbative scales:

PDFiBF Matching
coefficient
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I. INTRODUCTION

d2σ

dp2
T dY

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (1)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.

• HT effects are known to be large for large values of ”x”: J.Blumlein, H.Bottcher and

J.Blumlein, H.Bottcher, A. Guffanti....can then kinematically isolate F du measurement

at high x.

II. PV DIS PHENOMENOLOGY

The differential cross-section for electron-deuteron scattering takes the general form

d2σ

dΩdE ′ =
α2

Q4

E ′

E

(
Lγ

µνW
µν
γ − GF Q2

4
√

2πα
LγZ

µν W µν
γZ

)
, (2)

where E and E ′ are the energies of the incoming electron and outgoing electrons respectively

in the lab frame. The square of the momentum transfer via the exchanged photon or Z-

boson is Q2 = −q2 = −(%− %′)2 where %µ and %′µ denote the four-momenta of the incoming

and outgoing electrons respectively. The leptonic tensors in Eq.(2) are given by

Lγ
µν = 2(%µ%

′
ν + %′µ%ν − % · %′gµν + iλεµναβ%α%

′β),

LγZ
µν = (ge

V + λge
A)Lγ

µν , (3)

µΛ µB µHchanging x changing t

(a)
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Soft
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Pa Pb
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Figure 2: (a) Physics described by the beam function. Starting at a low hadronic scale µΛ the proton
is described by a PDF f . At the scale µB, the proton is probed by measuring radiation in the final
state, identifying a parton j described by fj(ξ, µB). Above µB , the initial state becomes an incoming
jet described by Iij(t, x/ξ, µ) for an off-shell parton i with spacelike virtuality −t, which enters the
hard interaction at µH . (b) Schematic picture of the final state for isolated Drell-Yan.

virtuality t′ of the parton i, while leaving its identity and momentum fraction unchanged,

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γiB(t− t′, µ)Bi(t

′, x, µ) . (1.3)

This evolution stops at the hard scale µH , where the off-shell parton i enters the hard partonic

collision. For µ ≥ µB the initial state is also sensitive to soft radiation as shown by the orange

wider angle gluons in Fig. 2(a). For cases where the beam function description suffices this

soft radiation eikonalizes, and the corresponding soft Wilson line is one component of the soft

function S that appears in the factorized cross section.

In general, a beam function combines the PDF with a description of all energetic initial-

state radiation that is collinear to the incoming proton direction up to t # Q2. The parton’s

virtuality t effectively measures the transverse spread of the radiation around the beam axis.

The specific type of beam function may depend on details of the measurements, much as

how jet functions depend on the algorithm used to identify radiation in the jet [7, 8, 9].

Our discussion here will focus on the most inclusive beam function, which probes t through

the measurement of hadrons in the entire forward hemisphere corresponding to the proton’s

direction. The utility of beam functions is that for a class of cross sections they provide a

universal description of initial-state radiation that does not need to be modeled or computed

on a case by case basis.

An example of a factorization theorem that involves beam functions is the “isolated Drell-

Yan” process, pp → X#+#−. Here, as depicted in Fig. 2(b), X is allowed to contain forward

energetic radiation in jets about the beam axis, but only soft wide-angle radiation with no

central jets. The presence of energetic forward radiation is an unavoidable consequence for

processes involving generic parton momentum fractions x that are away from the threshold

– 4 –
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In terms of the pT and Y variables, related to the Mandelstam u and t variables as in

Eq. (29), we have

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1x2Q
2, µQ;µT )Gij(x1, x

′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ),

(50)

where we have defined the pT and Y dependent perturbative function

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(|#b⊥|pT )

× Iβα
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iβα
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT )

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT )

(51)

E. Momentum space vs impact-parameter space

As seen in the last section, the factorization formula for the pT , Y and u, t dis-

tributions involved the functions Gij(x1, x′
1, x2, x′

2, pT , Y, µT ), defined in Eq. (51), and

Gij(x1, x′
1, x2, x′

2, u, t, µT ), defined in Eq. (49), respectively. These functions are defined

in terms of impact-parameter space Wilson coefficients Iβα
n,n̄;g,i(z, t, b⊥) and the impact-

parameter space iSF S−1(k−, k+, b⊥). We can now introduce momentum space Wilson

coefficients and a momentum-space iSF via

Iβα
n,n̄;g,i(z, t, k⊥) =

∫
d2b⊥
4π2

e−i#k⊥·#b⊥Iβα
n,n̄;g,i(z, t, b⊥),

S−1(k−, k+, k⊥) =

∫
d2b⊥
4π2

e−i#k⊥·#b⊥S−1(k−, k+, b⊥), (52)

so that the function Gij(x1, x′
1, x2, x′

2, pT , Y, µT ) can be written as

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

1

2π

∫
dt+n

∫
dt−n̄

∫
d2k⊥

n

∫
d2k⊥

n̄

∫
d2k⊥

s

δ(pT − |#k⊥
n + #k⊥

n̄ + #k⊥
s |)

pT

× Iβα
n;g,i(

x1

x′
1

, t+n , k
⊥
n , µT ) Iβα

n̄;g,j(
x2

x′
2

, t−n̄ , k
⊥
n̄ , µT )

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, k⊥

s , µT )

(53)

with no reference to b⊥. The expression for Gij(x1, x′
1, x2, x′

2, u, t, µT ) can be trivially obtained

from Eq. (53) by rewriting the pT and Y variables in terms of the u and t variables by

4

in hadronic collisions has been under investigation since the early days of QCD [27–29]. It

has been studied for the Higgs boson following the seminal analysis of Collins, Soper, and

Sterman (CSS) [30, 31] in several works [32–36].

The purpose of this paper is to derive a factorization theorem for the Higgs transverse

momentum pT and rapidity Y distribution, in the region Q̂ ∼ mh " pT " ΛQCD, using the

Soft Collinear Effective Theory(SCET) [37–39]. Here Q̂ and mh denote the partonic center

of mass energy and the Higgs mass respectively. Although we focus on Higgs production,

our methods and results can be immediately generalized to the differential distributions of

any one or more color neutral particles. The factorization theorem we derive has the form

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1, x2, µQ;µT )Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ), (1)

where Q is the hadronic center of mass energy, H is the hard Wilson coefficient arising

matching QCD onto SCET, and fi/P is the standard parton distribution function (PDF) for

taking a parton of species i from the proton. Gij is a perturbative coefficient at the pT scale

that has the form

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(b⊥ pT ) g
⊥
ασg

⊥
βω

× Iαβ
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iσω
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT ) (2)

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT ),

which is a convolution over the collinear functions Iαβ
n,n̄;g,i and the Inverse Soft Function (iSF)

S−1. Logarithms of mh/pT are summed by the Renormalization Group (RG) equations in

SCET and are encoded in H(x1, x2, µQ;µT ) which is the hard coefficient evolved from the

renormalization scale µQ ∼ mh down to µT ∼ pT . The logarithms of ΛQCD/pT are summed

via the standard DGLAP evolution of the PDFs and are encoded in the PDFs evaluated at

µT ∼ pT . The factorization formula in Eq.(1) is derived by matching QCD onto a sequence

of effective field theories EFT:

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (3)

which is shown graphically in Fig. 1. The first step QCD(nf = 6) → QCD(nf = 5) denotes

the usual procedure of integrating out the top quark to get an effective coupling of the Higgs

to gluons. The Higgs production mechanism then proceeds via this effective coupling. The

hard scale Q̂ ∼ mh is then integrated out by matching onto SCETpT , which describes the

dynamics of soft and collinear modes with transverse momenta of order pT . The factorization

Hard function. Transverse momentum 
function.

PDFs.

• The transverse momentum function is a convolution of the iBF 
matching coefficients and the soft function:

• Factorization formula in full detail:

Collinear pT emissions

Soft pT emissions
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the usual procedure of integrating out the top quark to get an effective coupling of the Higgs

to gluons. The Higgs production mechanism then proceeds via this effective coupling. The

hard scale Q̂ ∼ mh is then integrated out by matching onto SCETpT , which describes the

dynamics of soft and collinear modes with transverse momenta of order pT . The factorization

5

theorem in SCETpT takes the form

d2σ

dp2T dY
=

π

4(N2
c − 1)2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
d2b⊥
(2π)2

e−i!k⊥h ·!b⊥

× δ

[
p−h − eY

√
p2T +m2

h

]
δ

[
p+h − e−Y

√
p2T +m2

h

]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

]

×
∫ 1

0

dx1

∫ 1

0

dx2

∫
dt+n

∫
dt−n̄H(x1x2Q

2, µQ;µT ) B̃
αβ
n (x1, t

+
n , b⊥, µT ) B̃n̄αβ(x2, t

−
n̄ , b⊥, µT )

× S−1(x1Q− p−h − t−n̄
Q
, x2Q− p+h − t+n

Q
, b⊥, µT ),

(4)

where the collinear functions B̃αβ
n,n̄ are the Impact-parameter Beam Functions(iBFs). The

iBFs B̃αβ
n,n̄ are extensions of the beam functions that appear in [40, 41] and reduce to them for

b⊥ = 0 after contraction of the transverse indices α and β. The beam functions of Ref. [41]

were shown to have wide applicability to the analysis of observables at the LHC. The iBFs

are proton matrix elements evaluated at the scale µT ∼ pT . The iBFs are matched onto the

standard QCD PDFs by performing an OPE in ΛQCD/pT and the logarithms of ΛQCD/pT
are summed via the standard DGLAP equations used to evaluate the PDFs at the scale

µT ∼ pT . This is shown schematically in Fig. 1 and gives the final form of the factorization

theorem shown in Eqs.(1) and (2) where the collinear functions Iαβ
n,n̄;g,i are just the iBF to

PDF matching coefficients.

While the factorization and resummation of transverse-momentum distributions has been

studied extensively in the QCD literature, and SCET analyses [42, 43] have been performed

in the past, our analysis contains several interesting differences that we believe are worth

further investigating. A summary of the main points of this paper is given below:

1. We derive a factorization theorem for the Higgs transverse momentum and rapidity

distributions using effective field theory methods. A clear separation of the dynamics

associated with the scales Q̂ ∼ mh $ pT $ ΛQCD into perturbative Wilson coefficients

and standard QCD PDFs is achieved. Large logarithms of ratios of the relevant scales

are summed using RG equations in the effective theories. Power corrections in pT/mh

and ΛQCD/pT can be systematically derived by going to higher orders in the power

counting of the effective theories.

2. In addition to the factorization of the scales mh $ pT $ ΛQCD, the perturbative

physics of the pT scale is further factorized into an iSF S−1 and two distinct collinear

functions Iαβ
n;gi and Iαβ

n̄;gi. This additional factorization simplifies the structure of higher

order perturbative corrections at the pT scale. They can now be obtained through

higher order computations of the simpler perturbative functions S−1, Iαβ
n;gi and Iαβ

n̄;gi.

3. The factorization in SCET naturally occurs in terms of purely collinear PDFs and

soft functions. The purely collinear PDFs differ from the standard QCD PDFs by
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factorization scale µF . We organize our result following the notation of Ref. [38] into a joint

expansion in αs and ln(MZ/pT ):

d2σZ,qq̄

dp2TdY
=

4π2

3

α

sin2θW
e2qq̄

1

s p2T

∑

m,n

(
αs(µR)

2π

)n

nDm lnmM2
Z

p2T
. (73)

We set µQ = MZ and µT = pT (we comment later on the choice of an imaginary matching

scale µQ, as suggested recently [39]). Only terms through O(α2
s) are kept. We introduce the

explicit forms for the first few coefficients appearing in the CSS expansion of Eq. (61): A(1) =

2CF , B(1) = −3CF . Introducing the nomenclature fq/P (xA, µF ) = fA, fq̄/P (xB, µF ) = fB,

we find the following results for the first few coefficients:

1D1 = A(1)fAfB,

1D0 = B(1)fAfB + fB (Pqq ⊗ f)A + fA (Pqq ⊗ f)B ,

2D3 = −1

2

[
A(1)

]2
fAfB,

2D2 = −3

2
A(1)

[
fB (Pqq ⊗ f)A + fA (Pqq ⊗ f)B

]
−
[
3

2
A(1)B(1) − β0A

(1)

]
fAfB,

2D1 =

{
−A(1)fB (Pqq ⊗ f)A ln

µ2
F

M2
Z

− 2B(1)fB (Pqq ⊗ f)A − 1

2

[
B(1)

]2
fAfB

+
β0

2
A(1)fAfB ln

µ2
R

M2
Z

+
β0

2
B(1)fAfB − (Pqq ⊗ f)A (Pqq ⊗ f)B

−fB (Pqq ⊗ Pqq ⊗ f)A + β0 fB (Pqq ⊗ f)A
}
+ [A ↔ B] . (74)

The coefficients 1D1, 1D0, 2D3, and 2D2 agree2 with the analogous nCm coefficients of

Ref. [38] that appear in both the fixed-order expansion and the CSS formalism. Differ-

ences occur in 2D1; the 2C1 formalism of the usual approach contains two additional terms

depending on the quantities A(2) and C(1). This is not surprising, as our result has been

computed only to next-to-leading logarithmic accuracy. These terms in the expansion are

of next-to-next-to-leading logarithmic order. Denoting L = lnM2
Z/p

2
T , we remind the reader

that resummation to a given order gives the following towers of logarithms [10]:

leading logarithmic : αn
sL

2n−1,

next-to-leading logarithmic : αn
sL

2n−2,

next-to-next-to-leading logarithmic : αn
sL

2n−3. (75)

The full result at next-to-next-leading logarithmic accuracy along with the complete result

for 2D1 requires the next higher order calculation of the TMF. However, some of the next-to-

next-to-leading order logarithmic terms can be already seen to appear in the partial result

2 We disagree with the statement made in Ref. [40] that our formalism does not correctly resum logarithms

at the next-to-leading-logarithmic order; our explicit check makes it clear that this claim is incorrect.
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Check of NLL with Fixed Order

22

factorization scale µF . We organize our result following the notation of Ref. [38] into a joint

expansion in αs and ln(MZ/pT ):

d2σZ,qq̄

dp2TdY
=

4π2

3

α

sin2θW
e2qq̄

1

s p2T

∑

m,n

(
αs(µR)

2π

)n

nDm lnmM2
Z

p2T
. (73)

We set µQ = MZ and µT = pT (we comment later on the choice of an imaginary matching

scale µQ, as suggested recently [39]). Only terms through O(α2
s) are kept. We introduce the

explicit forms for the first few coefficients appearing in the CSS expansion of Eq. (61): A(1) =

2CF , B(1) = −3CF . Introducing the nomenclature fq/P (xA, µF ) = fA, fq̄/P (xB, µF ) = fB,

we find the following results for the first few coefficients:

1D1 = A(1)fAfB,

1D0 = B(1)fAfB + fB (Pqq ⊗ f)A + fA (Pqq ⊗ f)B ,

2D3 = −1

2

[
A(1)

]2
fAfB,

2D2 = −3

2
A(1)

[
fB (Pqq ⊗ f)A + fA (Pqq ⊗ f)B

]
−
[
3

2
A(1)B(1) − β0A

(1)

]
fAfB,

2D1 =

{
−A(1)fB (Pqq ⊗ f)A ln

µ2
F

M2
Z

− 2B(1)fB (Pqq ⊗ f)A − 1

2

[
B(1)

]2
fAfB

+
β0

2
A(1)fAfB ln

µ2
R

M2
Z

+
β0

2
B(1)fAfB − (Pqq ⊗ f)A (Pqq ⊗ f)B

−fB (Pqq ⊗ Pqq ⊗ f)A + β0 fB (Pqq ⊗ f)A
}
+ [A ↔ B] . (74)

The coefficients 1D1, 1D0, 2D3, and 2D2 agree2 with the analogous nCm coefficients of

Ref. [38] that appear in both the fixed-order expansion and the CSS formalism. Differ-

ences occur in 2D1; the 2C1 formalism of the usual approach contains two additional terms

depending on the quantities A(2) and C(1). This is not surprising, as our result has been

computed only to next-to-leading logarithmic accuracy. These terms in the expansion are

of next-to-next-to-leading logarithmic order. Denoting L = lnM2
Z/p

2
T , we remind the reader

that resummation to a given order gives the following towers of logarithms [10]:

leading logarithmic : αn
sL

2n−1,

next-to-leading logarithmic : αn
sL

2n−2,

next-to-next-to-leading logarithmic : αn
sL

2n−3. (75)

The full result at next-to-next-leading logarithmic accuracy along with the complete result

for 2D1 requires the next higher order calculation of the TMF. However, some of the next-to-

next-to-leading order logarithmic terms can be already seen to appear in the partial result

2 We disagree with the statement made in Ref. [40] that our formalism does not correctly resum logarithms

at the next-to-leading-logarithmic order; our explicit check makes it clear that this claim is incorrect.

LL

NLL
LL

NLL

NNLL

Checked

Requires 
two loop 

iBF and iSF
(two loop iSF known;

two loop iBF in progress;
Li, SM, Petriello)

22

The function F appearing in the integrand takes the following form in the first region after

this simplification:

Fqq̄(x1, x
∗
2) → fq/P (x1)fq̄/P (x

∗
2)×

1

p2T

[
1 +

(
xA

x1

)2
]
, (70)

where for simplicity of presentation we have suppressed the overall constants which appear.

A similar simplification and structure are obtained in the other part of the integration.

We reduce this further by simplifying the remaining integrals over the xi, following the

procedure outlined in Ref. [47]. To facilitate comparison with results in the literature we

introduce the standard notation for the convolution of two functions,

(f ⊗ g) (z) =

∫ 1

0

dxdy f(x)g(y)δ(z − xy), (71)

and remind the reader of the leading-order DGLAP kernel

Pqq(x) = CF

[
1 + x2

1− x

]

+

. (72)

We also introduce the following combinations of coupling constants to match the notation

in Ref. [48], with which we eventually compare:

e2qq̄ =
1

16cos2θW

[
1 + (1− 4|eq|sin2θW )2

]
. (73)

For simplicity we continue to focus on the qq̄ partonic channel. After straightforward ma-

nipulations we arrive at our result for the di  erential distribution:

d2σZ,qq̄

dp2TdY
=

4π2

3

α

sin2θW
e2qq̄

αs(µT )

2π

1

s p2T

{
2CFfq/P (xA, µT )fq̄/P (xB, µT ) ln

M2
Z

p2T
− 3CFfq/P (xA, µT )fq̄/P (xB, µT ) + fq/P (xA, µT )

(
Pqq ⊗ fq̄/P

)
(xB)

+ fq̄/P (xB, µT )
(
Pqq ⊗ fq/P

)
(xA)

} ∣∣∣exp
{
CF

4

αs

π

[
−ln2µ

2
Q

µ2
T

+ 3 ln
µ2
Q

µ2
T

]} ∣∣∣
2

.

(74)

We have explicitly denoted the scales which appear in the overall coupling constant and in

the PDFs. We note that the solution for the evolution factor UHq
Z
can be obtained from

Ref. [31]; to the order in αS we are working, the di  erent momentum scales which appear

in the evolution factors in the partonic cross section do not matter, and a simple overall

exponential factor is obtained in the di  erential cross section.
To compare the structure of logarithms with those obtained in the CSS approach, we

first use renormalization-group arguments to evolve all coupling constants which appear to

an arbitrary renormalization scale µR, and similarly use DGLAP to evolve all PDFs to the
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• Prediction for Higgs boson pT distribution.
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FIG. 4: Numerical predictions for the transverse momentum spectrum for Higgs boson production
at the LHC for central rapidity. Shown are the fixed-order result and those obtained after imple-
menting the resummation formula of Eq. (6) through LL and NLL. The bands arise from the scale
variation shown in the text.

these would be called LL+LO and NLL+LO. We use MSTW 2008 parton distribution

functions [41]. For LL and LO predictions we use leading order PDFs with 1-loop running

of the strong coupling constant, while for our NLL results we use NLO PDFs with 2-loop

running for αs. Our results depend on the two matching scales µT and µQ, and we vary

these scales to obtain an estimate of the theoretical error. As our central scale choices we

set µ2
T = p2T and µ2

Q = −M2, and vary µ2
T , µ

2
Q independently around these choices by a

factor of 2. Two aspects of these choices require comment. Following Ref. [39], we utilize

an imaginary matching scale for µQ which has the effect of resumming factors of π2 which

arise from the time-like momentum transfer appearing in H. This was shown to improve the

convergence of the perturbative expansion for inclusive Higgs production [36, 39], and has

also been utilized in the literature to study Drell-Yan [35]. We also find better agreement

with data (see Fig. 5) for an imaginary µQ compared to a real µQ which can be attributed
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• Good agreement with data.
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FIG. 5: Numerical predictions for the transverse momentum spectrum for Z boson production
at Tevatron Run 1, compared with data form both CDF and D0. Shown is the resummation
prediction of Eq. (5) at NLL. The bands arise from the scale variation shown in the text, while
the result for the central scale choice is shown by the solid line. The lower limit of the plot is pT=
1.75 GeV.

to the effect of resumming factors of π2 with the former choice. We also choose to vary

our scales around a reduced range to avoid evaluating αs(µT ) at too low a value when the

transverse momentum becomes small.

In Fig. 4 we show the predictions for the Higgs pT spectrum at the LHC, using both

the fixed-order expression and the resummed results at LL and NLL accuracies. The

general features of this plot are clear: large logarithms of the form ln (m2
h/p

2
T ) spoil the

fixed-order perturbative expansion at low pT . The Sudakov suppression coming from the

renormalization-group evolution of the hard function H tames this behavior. The central

value of the prediction is absolutely stable upon proceeding from LL to NLL; only a reduc-

tion of the scale variation is observed. At intermediate and high momenta, the matching

onto the fixed-order expression is smooth. The sensitivity to scale choices that can lead to

• Theory curve determined completely by perturbative 
functions and standard PDFs.
• Smooth matching between low and high pT regions.



Non-Perturbative pT Region 
• Non-perturbative region of pT:
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negative results [15] in the standard approach, does not occur in this effective field theory

approach. This allows the matching scale µQ to be varied throughout a range sufficient to

use it as an estimator of the theoretical uncertainty.

One aspect of transverse resummation in SCET that requires further study is the treat-

ment of the non-perturbative region pT ∼ ΛQCD. In our analysis, the transverse momentum

function G becomes non-perturbative, and must be modeled. The onset of this region can

be seen in the plot by the large scale variation at low pT , which is caused by evaluating

αs(µT ) ∼ αs(ΛQCD). Since this object has a non-pertubative definition in terms of operator

matrix elements and a well-defined running, it is reasonable to extract this function using

available data. We defer this to later work, and in our plot for the Higgs pT distribution we

simply stop our plot at a lower value of pT = 3 GeV.

In Fig. 5 we plot our prediction for the Z-boson pT distribution at the Tevatron Run 1,

and compare to data from CDF [24] and D0 [23]. We study the spectrum down to pT = 1.75

GeV. The agreement with the data is excellent over the entire range. The low pT version

of this data can eventually be used to constrain the non-perturbative TMF that appears in

SCET, as is done in the CSS approach [42].

VIII. CONCLUSIONS

In this manuscript we have extended our analysis of transverse momentum distributions

using the Soft-Collinear Effective Theory(SCET) to account for both electroweak and Higgs

boson production at low pT in hadronic collisions. We have derived a factorization theorem

for the transverse momentum distribution for the production of electroweak gauge boson

production, and have provided all necessary analytic expressions to perform resummation

of low-pT distributions for any color-neutral particles to next-to-leading-logarithmic accu-

racy. Our effective field theory approach is free of the Landau pole that appears in the

standard approach even for perturbative values of pT . We thus have a numerically stable

matching to the fixed-order QCD result, leading to a smooth transition from the low-pT
resummation region to the intermediate and high pT region without the need for a matching

prescription. For perturbative values of pT , our approach predicts the transverse momentum

distribution entirely in terms of field-theoretically derived perturbative functions and stan-

dard initial state PDFs. For non-perturbative values of pT , an additional non-perturbative

Transverse Momentum Function (TMF) appears with a rigorous field-theoretic definition

and computable anomalous dimension.

We have presented the first numerical predictions for pT spectra arising from SCET for

Higgs and Z-boson production, and for Z boson production have shown an initial numerical

comparison with Tevatron data. The agreement with data is excellent over the kinematic

range currently covered by our factorization formula, indicating that SCET will provide a

useful framework for the analysis and interpretation of hadron collider distributions.
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Including the Non-Perturbative Region

• pT spectrum including the 
non-perturbative region

FIG. 1: The result for the pT -spectrum of the Z-boson for the best fit parameter choices a =

2.25, b = 0.1GeV,Λ = 0.45GeV. We have also set µ2
Q = −M2

Z and µ2
T = p2T + p2Tmin where

pTmin = 1 GeV. The data points were collected by the CDF and D0 collaborations [22, 23].

and that incorporate additional effects, but we restrict ourselves in this initial analysis to

the form of Eq. (13).

The implementation of the model also requires care regarding the choice of the scale

µT . In the perturbative pT region, the scale µT ∼ pT is the appropriate choice. However,

one cannot use µT ∼ pT when pT is of order ΛQCD or smaller. The RG equations for the

evolution of the hard function Hq
Z(x1x2Q2, µQ;µT ) become non-perturbative in this region,

and G
qrs
part. in Eq. (11) becomes incalculable. A sensible choice for µT that can be applied in

both the perturbative and non-perturbative pT regions is

µ2
T = ξ2 p2T + p2Tmin, (16)

where pTmin ∼> 1 GeV is a low, but still perturbative, scale and can be viewed as another

parameter of the model. It is analogous to the parameter bmax that appears in the CSS

approach to transverse momentum resummation. ξ is a scale variation parameter we take to

be O(1). The above choice of scale for µT has several useful properties. As pT → 0, the scale

µT → pTmin so that Gqrs
part in Eq. (11) is still evaluated at a perturbative scale. Similarly, the

running of the hard function Hq
Z(x1x2Q2, µQ;µT ) will freeze at the perturbative scale pTmin

as pT → 0. For larger values of pT $ pTmin ∼> 1 GeV, µT → ξ pT so that the appropriate

choice of µT ∼ pT in the perturbative region is recovered.

9

FIG. 2: The result of varying the model parameters a, b, and Λ within their 68% confidence level

allowed region. We have chosen µ2
Q = −M2

Z , µ
2
T = p2T + p2Tmin with pTmin = 1 GeV. We see that

the variation of the model parameters only affects the very low pT region and has a negligible effect

in the region pT " ΛQCD. The data points are from the CDF and D0 collaborations [22, 23].

We now present an example fit of the TMF function Gqrs to Tevatron data for the Z-

boson pT spectrum. We choose µ2
Q = −M2

Z [48, 49], µT as in Eq. (16) with ξ = 1, and

for simplicity set pTmin = 1 GeV. We note that this ensures that the scale µT at which the

PDFs are evaluated always remains at or above the initial scale Q0 = 1 GeV used in the

MSTW fit [50], a criterion pointed out in previous work in the CSS approach [31]. We then

perform a chi-squared fit of the parameters a, b, and Λ in Eq.(13) against CDF data [22]; for

simplicity we do not include the D0 data in this example fit. The best fit values obtained

are a = 2.25, b = 0.1GeV,Λ = 0.45GeV with a goodness-of-fit measure χ2/d.o.f. ∼ 0.7.

The result for these best fit values are shown in Fig. 1 along with the CDF and D0 data

points. Fig. 1 shows that the TMF model is flexible enough to give a good description of

data in the region pT < 1 GeV where non-perturbative transverse momentum dynamics

becomes important. At the same time, a good description of the data is also achieved

for larger perturbative values of pT where the result is given in terms of a perturbatively

calculable TMF function. The model dependence introduced byGmod turns off in the region

pT " ΛQCD, as expected. This is further illustrated in Fig. 2 where we show the results for

the 68% confidence level region in the parameters a, b, and Λ. We see in Fig. 2 that while the

different parameter choices affect the pT -distribution in the non-perturbative region, there is

10

• Model dependence restricted 
only to non-perturbative region 
as expected.
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

Summary

• iBFs are fully unintegrated PDFs. Interesting objects in their own right.
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• Work is in progress to achieve NNLL resummation with applications to 
the LHC.

• New factorization theorem for transverse momentum distribution in 
terms of iBFs and iSFs.

• Perturbative pT spectrum given in terms of PDFs and perturbatively            
  calculable functions. Smooth matching between resummed and fixed 
  order results. No Landau pole.

• NLO iBFs and NNLO iSF known. 
   NLL resummation completed.
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TMDPDF formalism

- Rapidity divergence regulated by external
regulator.

Comparison with TMDPDF Formalism
iBF formalism

- Rapidity divergence regulated by physical 
residual momentum determined by 
kinematics.

- Factorization in terms of TMDPDFs. 
(See talk by J. Chiu for SCET formulation with
TMDPDFs)

- Factorization in terms of iBFs; fully 
unintegrated PDFs; more differential than 
TMDPDFs.

- Cancellation of regulator dependence 
gives rise to Collins-Soper evolution 
equation for resummation.

- Resummation in terms of renormalization 
group equations.

• iBF is another interesting probe of nucleon structure 
dynamics in the non-perturbative region.
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

EFT framework
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parton distribution functions and partonic cross sections:

σPP→h =

∫
dx1dx2fg/P (x1, µ)fg/P (x1, µ)σ̂gg→h(ŝ, t̂, û, µ), (11)

where ŝ, t̂, and û are the usual partonic Mandelstam variables. For production of the Higgs

with non-zero pT , the differential partonic cross section is given by [68]

dσ̂

dt̂
=

π

384v2

(αs

π

)3
{
m8

h + ŝ4 + t̂4 + û4

ŝt̂û

}
. (12)

The total partonic cross section for gg → h through next-to-leading order in QCD pertur-

bation theory is [7, 9]

σ̂ =
π

576v2

(αs

π

)2
{
δ(1− z) +

αs

π

[
δ(1− z)

(
π2 +

11

2

)
− 11

2
(1− z)3

+ 6
(
1 + z4 + (1− z)4

)( ln(1− z)

1− z

)

+

}
, (13)

where z = m2
h/ŝ. This result assumes the scale choice µ2 = ŝ. The dependence of the

partonic cross section on the renormalization and factorization scales can be restored by

using the known renormalization group running of the cross section. The result is presented

in Ref. [9].

III. EFT FRAMEWORK

We derive a factorization theorem via a sequence of effective theories

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (14)

which factorize the physics associated with the different scales Q ∼ mh $ pT $ ΛQCD into

calculable perturbative functions and standard QCD PDFs. As we are assuming that the

mass of the Higgs is sufficiently small (mh < 2mt), we can integrate out the top quark in the

matching step QCD(nf = 6) → QCD(nf = 5) to obtain an effective coupling of the Higgs

boson to gluons. The cross sections obtained using this effective theory were described in

Sec. II. To derive a renormalization group equation allowing resummation of large logarithms

ln (mh/pT ) that appear at low transverse momenta, the matching to SCETpT is required.

The soft-collinear decoupling property of the leading order SCETpT Lagrangian also leads

to a factorization of the soft and collinear sectors, which simplifies calculations of the cross

section in the low pT region. Finally, the matching to SCETΛQCD expresses the cross section

in terms of the standard parton distribution functions. We describe in this section the details

of each stage in the matching in QCD(nf = 5) → SCETpT → SCETΛQCD .

Top quark 
integrated out.

Matched onto 
SCET.

Soft-collinear 
factorization.

Matching onto 
PDFs.

Newly defined objects describing 
soft and collinear pT emissions
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4

in hadronic collisions has been under investigation since the early days of QCD [27–29]. It

has been studied for the Higgs boson following the seminal analysis of Collins, Soper, and

Sterman (CSS) [30, 31] in several works [32–36].

The purpose of this paper is to derive a factorization theorem for the Higgs transverse

momentum pT and rapidity Y distribution, in the region Q̂ ∼ mh " pT " ΛQCD, using the

Soft Collinear Effective Theory(SCET) [37–39]. Here Q̂ and mh denote the partonic center

of mass energy and the Higgs mass respectively. Although we focus on Higgs production,

our methods and results can be immediately generalized to the differential distributions of

any one or more color neutral particles. The factorization theorem we derive has the form

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1, x2, µQ;µT )Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ), (1)

where Q is the hadronic center of mass energy, H is the hard Wilson coefficient arising

matching QCD onto SCET, and fi/P is the standard parton distribution function (PDF) for

taking a parton of species i from the proton. Gij is a perturbative coefficient at the pT scale

that has the form

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(b⊥ pT ) g
⊥
ασg

⊥
βω

× Iαβ
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iσω
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT ) (2)

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT ),

which is a convolution over the collinear functions Iαβ
n,n̄;g,i and the Inverse Soft Function (iSF)

S−1. Logarithms of mh/pT are summed by the Renormalization Group (RG) equations in

SCET and are encoded in H(x1, x2, µQ;µT ) which is the hard coefficient evolved from the

renormalization scale µQ ∼ mh down to µT ∼ pT . The logarithms of ΛQCD/pT are summed

via the standard DGLAP evolution of the PDFs and are encoded in the PDFs evaluated at

µT ∼ pT . The factorization formula in Eq.(1) is derived by matching QCD onto a sequence

of effective field theories EFT:

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (3)

which is shown graphically in Fig. 1. The first step QCD(nf = 6) → QCD(nf = 5) denotes

the usual procedure of integrating out the top quark to get an effective coupling of the Higgs

to gluons. The Higgs production mechanism then proceeds via this effective coupling. The

hard scale Q̂ ∼ mh is then integrated out by matching onto SCETpT , which describes the

dynamics of soft and collinear modes with transverse momenta of order pT . The factorization

19

In terms of the pT and Y variables, related to the Mandelstam u and t variables as in

Eq. (29), we have

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1x2Q
2, µQ;µT )Gij(x1, x

′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ),

(50)

where we have defined the pT and Y dependent perturbative function

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(|#b⊥|pT )

× Iβα
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iβα
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT )

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT )

(51)

E. Momentum space vs impact-parameter space

As seen in the last section, the factorization formula for the pT , Y and u, t dis-

tributions involved the functions Gij(x1, x′
1, x2, x′

2, pT , Y, µT ), defined in Eq. (51), and

Gij(x1, x′
1, x2, x′

2, u, t, µT ), defined in Eq. (49), respectively. These functions are defined

in terms of impact-parameter space Wilson coefficients Iβα
n,n̄;g,i(z, t, b⊥) and the impact-

parameter space iSF S−1(k−, k+, b⊥). We can now introduce momentum space Wilson

coefficients and a momentum-space iSF via

Iβα
n,n̄;g,i(z, t, k⊥) =

∫
d2b⊥
4π2

e−i#k⊥·#b⊥Iβα
n,n̄;g,i(z, t, b⊥),

S−1(k−, k+, k⊥) =

∫
d2b⊥
4π2

e−i#k⊥·#b⊥S−1(k−, k+, b⊥), (52)

so that the function Gij(x1, x′
1, x2, x′

2, pT , Y, µT ) can be written as

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

1

2π

∫
dt+n

∫
dt−n̄

∫
d2k⊥

n

∫
d2k⊥

n̄

∫
d2k⊥

s

δ(pT − |#k⊥
n + #k⊥

n̄ + #k⊥
s |)

pT

× Iβα
n;g,i(

x1

x′
1

, t+n , k
⊥
n , µT ) Iβα

n̄;g,j(
x2

x′
2

, t−n̄ , k
⊥
n̄ , µT )

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, k⊥

s , µT )

(53)

with no reference to b⊥. The expression for Gij(x1, x′
1, x2, x′

2, u, t, µT ) can be trivially obtained

from Eq. (53) by rewriting the pT and Y variables in terms of the u and t variables by

Factorization Formula

• One can express the formula entirely in momentum space:


