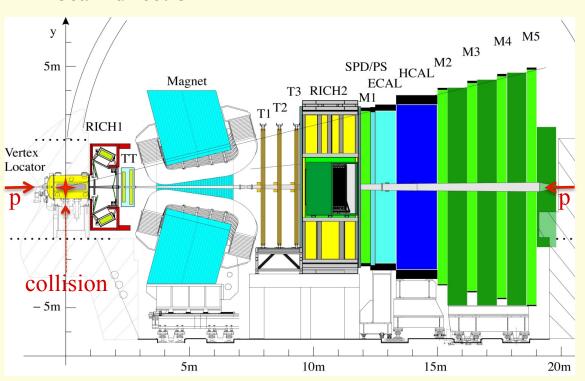


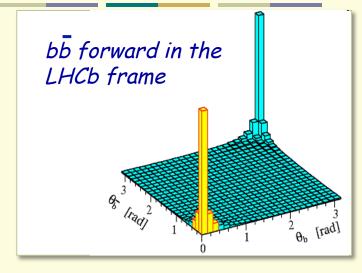
Silvia Borghi

on behalf of the LHCb Collaboration

Meeting of the Division of Particles and Fields of the American Physical Society

Outline


- LHCb experiment
- Charm physics
- LHCb measurement in the charm sector:
 - Search of CP violation in $D^+ \to K^-K^+\pi^+$ [LHCb-Paper in preparation]
 - Measurements of direct and indirect CP violation: A_{Γ} [LHCb-CONF-2011-046] and ΔA_{CP} [LHCb-CONF-2011-023]
- Conclusion



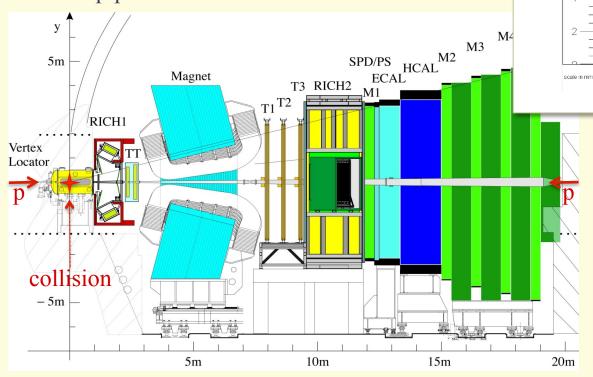
The LHCb experiment

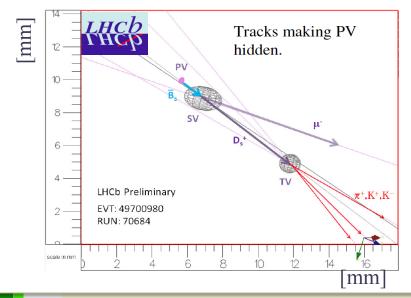
- LHCb is an experiment dedicated to heavy flavour physics at the LHC.
- Its primary goal is to look for indirect evidence of new physics in CP violation and rare decays of beauty and charm hadrons.
- Heavy flavour are produced predominantly close to beam direction

LHCb experiment

⇒Forward spectrometer:

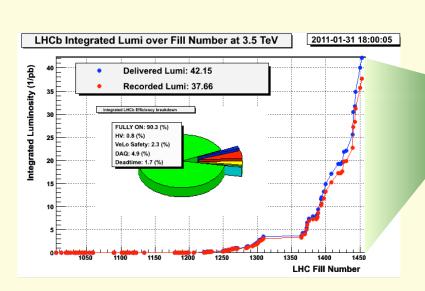
1.9 < η<4.9

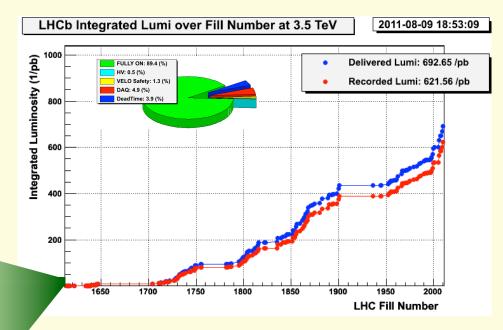



The LHCb experiment

Main detector requirements for the reconstruction of the flavour decay:

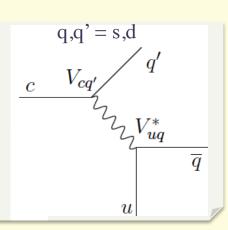
- Excellent vertex resolution : $\sigma_{PV} \sim 13 \ \mu m$ for x and y
- \rightarrow Proper-time resolution ~ 50 fs
- Good momentum resolution: $\Delta p/p = 0.35\% 0.5\%$

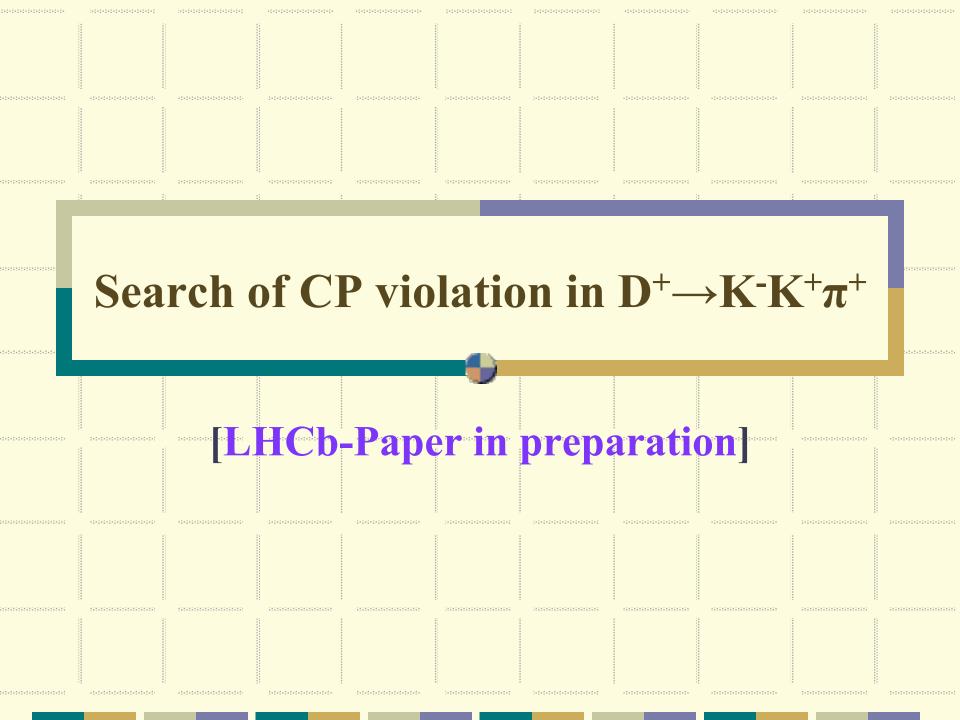

- Good particle identification $[K/\pi \text{ separation}]$
- High efficiency trigger



Data Taking

- Results just using 2010 sample with an integrated luminosity of 38 pb⁻¹
- Integrated Luminosity in 2011 (so far...) L= 621 pb⁻¹
- a order of magnitude more integrated luminosity in 2011
- Writing out events with fully reconstructed charm hadrons at a rate of 1 kHz

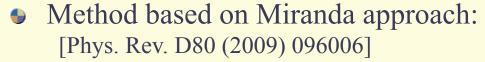

Charm Physics

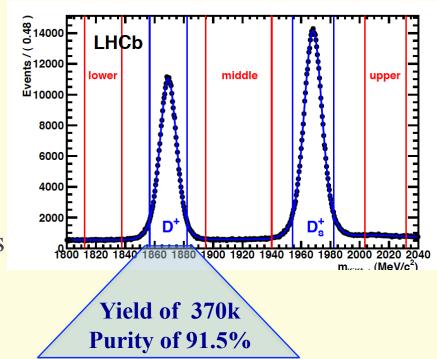


- CP violation in charm provides a unique probe of New Physics (NP)
 - sensitive to NP in the up sector
 - SM charm physics is CP conserving to first approximation (2 generation dominance)
- CP violation contributions:
 - in mixing: rate of $D^0 \rightarrow \overline{D^0}$ and $\overline{D^0} \rightarrow D^0$ differ
 - in decay: amplitudes for a process and its conjugate differ
 - in interference between mixing and decay diagrams
- In singly-Cabibbo-suppressed modes (10^{-4}) plausible, O(10^{-3}) possible

Three types of D into 2 body decay:

- Cabibbo Favored (SC): $D^0 \rightarrow K^-\pi^+$
- Singly Cabibbo Suppressed (SCS): $D^0 \rightarrow K^-K^+$; $D^0 \rightarrow \pi^-\pi^+$
- Doubly Cabibbo Suppressed (DCS): $D^0 \rightarrow K^+\pi^-$

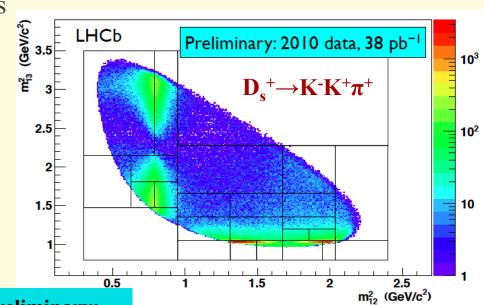

Search of CP violation in $D^+ \rightarrow K^-K^+\pi^+$


Model independent search for direct CP violation in the SCS decay

 $D^+ \longrightarrow K^-K^+\pi^+$

- 2010 data L~38 pb⁻¹ ⇒10 and 20 times more signal event than in previous BaBar and CLEO-c results
- Direct comparison on a bin-by-bin basis between D⁺ and D⁻ Dalitz plots
 ⇒ a local CP asymmetry
 - Different binning schemes (sensitive to range of CPV scenarios)

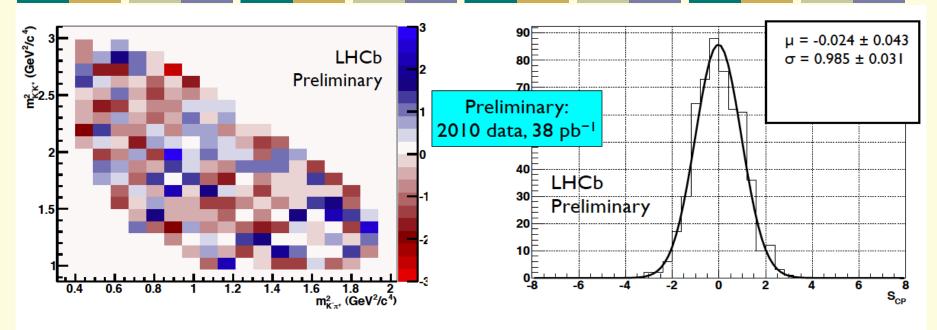
- Asymmetry significance in each bin
- Evaluation of the $\chi^2/ndf \Rightarrow$ probability value



Control channels

9

- Investigation of no CP asymmetries by data-driven method
 - Control channel $D_s^+ \rightarrow K^-K^+\pi^+$
 - Sidebands $D^+ \rightarrow K^-K^+\pi^+$
 - Control channel $D^+ \rightarrow K^-\pi^+\pi^+$
- Combine the two magnet polarities to cancel various small left-right asymmetries
- ✓ No evidence of fake asymmetries in the control mode
- ✓ Sidebands around the D⁺ signal peak look fine
- ✓ Method very robust against systematic effects



Preliminary:	III ₁₂ (GeV/C)					
2010 data, 38 pb ⁻¹	Magnet	Magnet	Combined			
Window	Up	Down	Combined			
Lower sideband	32.7%	10.1%	8.7%			
Middle sideband	31.4%	27.7%	50.8%			
D _s ⁺ window	88.9%	15.5%	34.4%			
Upper sideband	1.3%	50.7%	26.5%			

Results for $D^+ \rightarrow K^-K^+\pi^+$

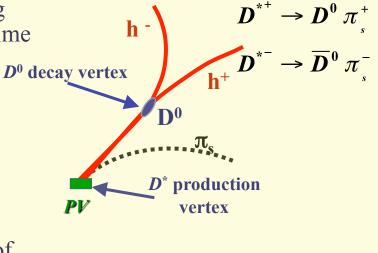
LHCb Preliminary						
Magnet Up	6.0%					
Magnet Down	28.5%					
Combined	12.7%					

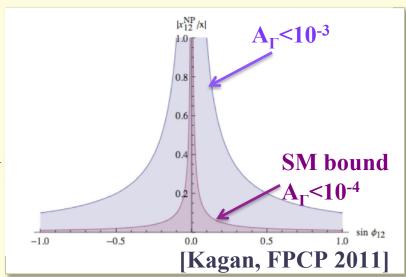
No evidence for CP violation in the 2010 dataset of 38 pb⁻¹

0+	:-:-:-:-:-:-:-:-:-:-:-:	:-:-:-:-:-:-:-:-:-:-:-:-:-:-:	******************	.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0+0+0+0+0+0+0+0+0+0+0+0+0+0+0	0+0+0+0+0+0+0+0+0+0+0+0+0+0+0	-0-0-0-0-0-0-0-0-0-0-0-0-0-0	******************	(0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+	0+
********************	**********************	*******************		(0.000000000000000000000000000000000000	1404040404040404040404040	(+0+0+0+0+0+0+0+0+0+0+0+0+0		*******************		2+2+2+2+2+2+2+2+2+2+2+2+2+2+2
**********************	2*2*2*2*2*2*2*2*2*2*2*2*2*	2*2*2*2*2*2*2*2*2*2*2*2*	 	********************	*********************	**********************		2*2*2*2*2*2*2*2*2*2*2*2*2	***************************************	***********************
	:		:					:	:	151

			M	[easu]	remei	nt of A	$\mathbf{A}_{\mathbf{\Gamma}}$			******************
							_1			
+0										***************
-0-0-0-0-0-0-0-0-0-0-0-0-	5+5+5+5+5+5+5+5+5+5+5+5+5+6+6	5+5+5+5+5+5+5+5+5+5+5+5+		Ch-C	ONF.	2011 -	0461	2424242424242424242424242	******************	*******************
							0.0 j			
	************************	***************************************		(2+2+2+2+2+2+2+2+2+2+2+2+2+	100000000000000000000000000000000000000	;egegegegegegegegegegeg	***************************************	*2*2*2*2*2*2*2*2*2*2*2*2*		0+
				190909090909090909090						
	*2*2*2*2*2*2*2*2*2*2*2*2*2	*******************	.5-5-5-5-5-5-5-5-5-5-5-5-5-5	·5+5+5+5+5+5+5+5+5+5+5+6+	:*2*2*2*2*2*2*2*2*2*2*2*2	:+:+:+:+:+:+:+:+:+:+:+:+:	********************	******************	2-2-2-2-2-2-2-2-2-2-2-2-2-2	2+2+2+2+2+2+2+2+2+2+2+2+2+2+2
				_	_		_			

A_{Γ} measurement

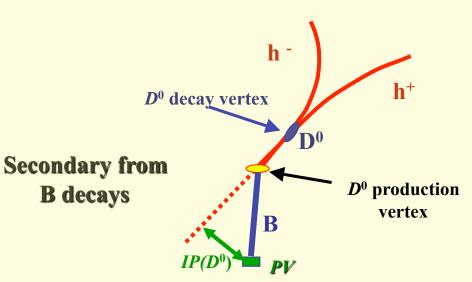


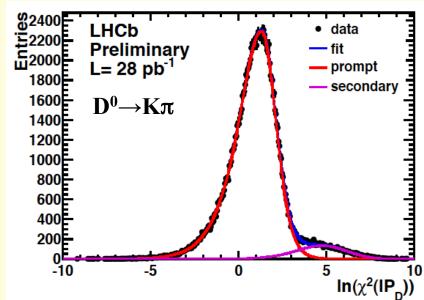

A direct measurement of CP violation in D⁰ mixing can be evaluated by the asymmetry of the proper-time of flavour-tagged decays:

$$A_{\Gamma} = \frac{\tau(\overline{D}^{0} \to K^{-}K^{+}) - \tau(D^{0} \to K^{-}K^{+})}{\tau(\overline{D}^{0} \to K^{-}K^{+}) + \tau(D^{0} \to K^{-}K^{+})}$$
$$\approx \frac{A_{M}}{2} y \cos \phi - x \sin \phi$$

where the flavour of D⁰ is determined by the sign of the charged pion.

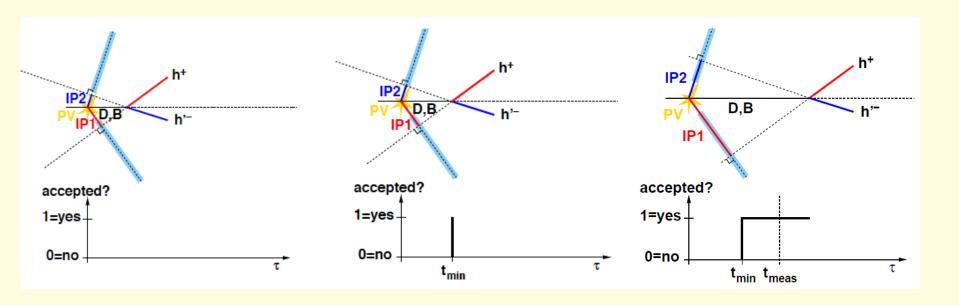
- Control mode: $D^0 \rightarrow K\pi$
- → A non-zero value of A_{Γ} would be a direct measurement of CP violation and a sign of new physics contribution.





A_{Γ} measurement: Method

- Unbinned likelihood fit m_{D0} for the determination of signal yield
- Main background due to secondary D⁰
 - Not distinguishable by the invariant mass distribution
 - Difference direction: large IP wrt PV and large angle between p_{D0} and dir. pointing to PV
 - Need statistical separation by $ln(\chi^2_{IP})$
- Simultaneous fit of proper time and $ln(\chi^2_{IP})$ to distinguish between prompt and secondary
- Evaluation of the mis-tag rate from $\Delta m(D^*-D^0(hh))$

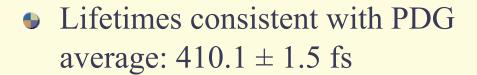


Acceptance evaluation

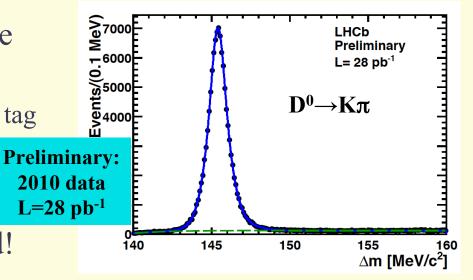
- Determine trigger & selection acceptance on an event-by-event basis, the so called 'Swimming method'
- Evaluate the event acceptance as function of lifetime:
- move the PV along the D⁰ momentum

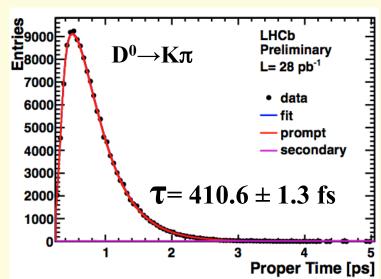
 Evaluate the trigger & selection decision: accepted or not accepted

Control channel $D^0 \rightarrow K\pi$



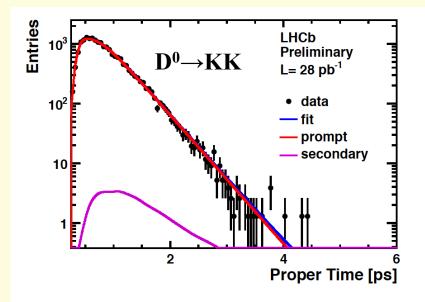
• Proof of principle: apply same procedure to $D^0 \rightarrow K\pi$

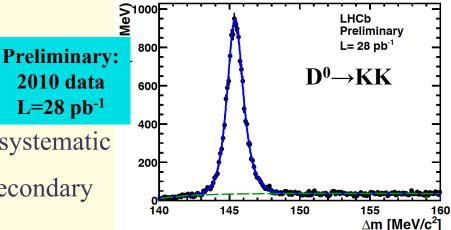

~110k candidates of each flavour tag

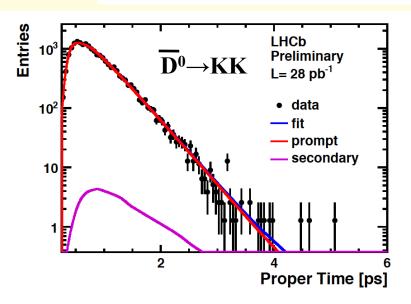

$$A_{\Gamma}^{\text{Kpi}}$$
=(-0.9 ± 2.2 ± 1.6) 10⁻³

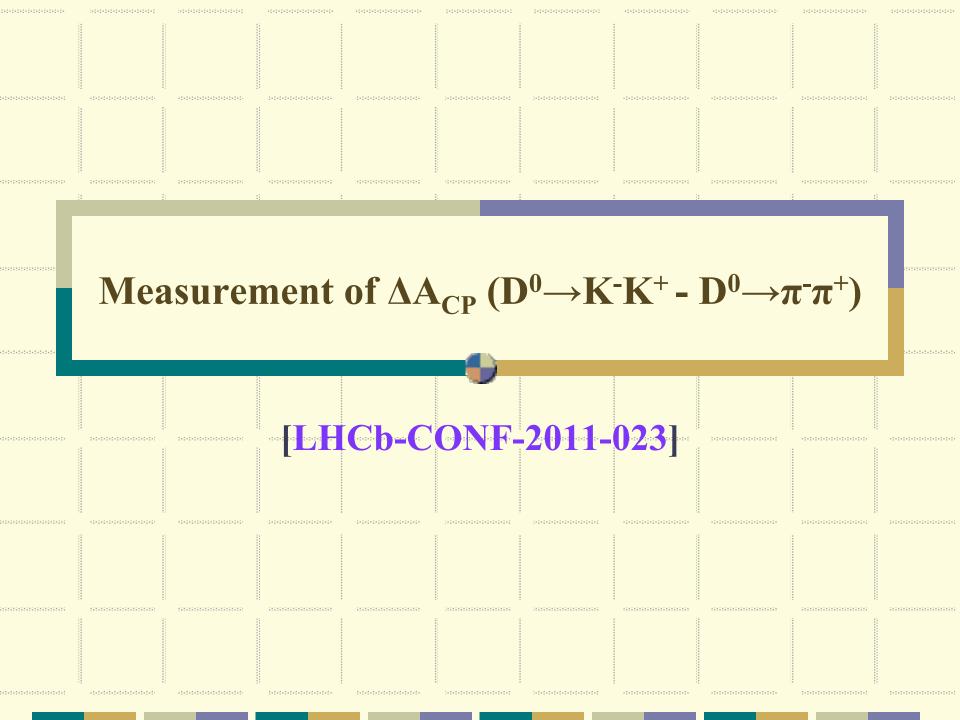
Consistent with 0 as expected!

 Acceptance well modelled by 'Swimming'






A_{Γ} measurement



- Data sample of D0 → KK:
 ~15k events of each flavour tag.
- $A_{\Gamma} = (-0.59 \pm 0.59 \pm 0.21) \%$ $L = 28 \text{ pb}^{-1}$ where 1st error is statistical and 2nd systematic
- The main systematic is due to the secondary and the combinatorial background

Measurement of ΔA_{CP} (D⁰ $\rightarrow K^-K^+$ - D⁰ $\rightarrow \pi^-\pi^+$)

18

$$A_{RAW}(f)^* = \frac{\mathbf{N}(D^{*+} \to D^0(f)\pi_s^+) - \mathbf{N}(D^{*-} \to \overline{D}^0(\overline{f})\pi_s^-)}{\mathbf{N}(D^{*+} \to D^0(f)\pi_s^+) + \mathbf{N}(D^{*-} \to \overline{D}^0(\overline{f})\pi_s^-)}$$

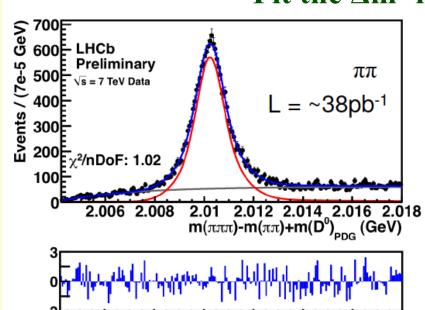
$$A_{RAW}(f)^* = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_s) + A_{P}(D^{*+})$$

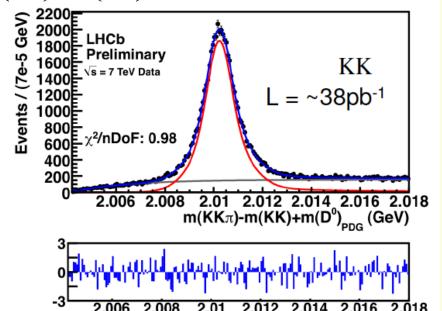
Physics CP asymmetry Production asymmetry

Detection asymmetry of D^0 and of soft pion

- Taking $A_{RAW}(f)^* A_{RAW}(f')^*$ the production and soft pion detection asymmetries will cancel.
- Detection asymmetry for self-conjugate final states is 0

$$A_{RAW}(K^-K^+)^* - A_{RAW}(\pi^-\pi^+)^* = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) \equiv \Delta A_{CP}$$


- All the D* related production and detection effects cancel
- CP asymmetry difference very robust against systematics



Measurement of ΔA_{CP} (D⁰ $\rightarrow K^-K^+$ - D⁰ $\rightarrow \pi^-\pi^+$)

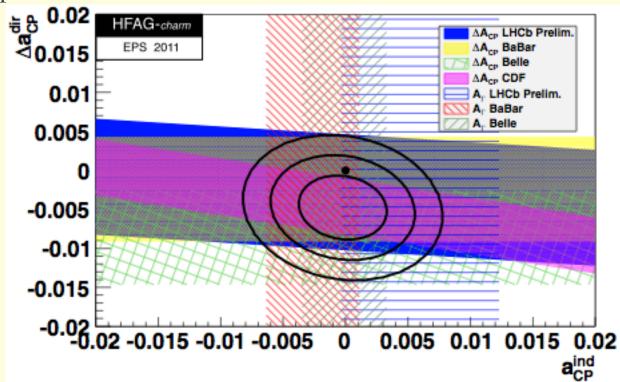
► Total signal yield: 116k tagged $D^0 \rightarrow K^-K^+$ and 36k tagged $D^0 \rightarrow \pi^-\pi^+$

$$\Delta A_{CP} = A_{CP} (K^- K^+) - A_{CP} (\pi^- \pi^+) = (-0.28 \pm 0.70 \pm 0.25)\%$$

Preliminary: 2010 data, 38 pb⁻¹

- Note: already competitive with the B-factories!
 - Statistical error for BABAR 0.62%, Belle 0.60%, but for CDF 0.33%
- Expect systematic error to scale well with integrated luminosity
 - Estimates very conservative with large statistical component

Interpretation

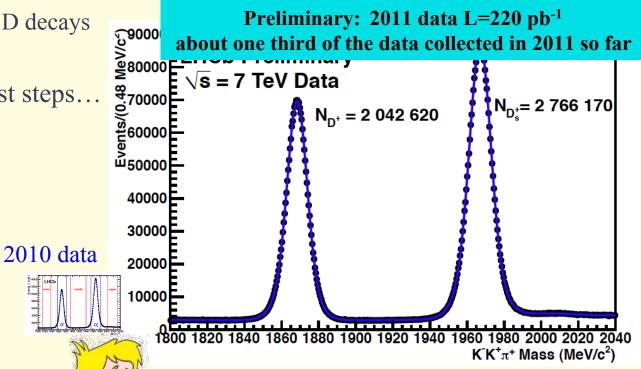

• Combination of direct and indirect CPV measurement

$$\Delta A_{CP} = \Delta a_{CP}^{dir} + \Delta < t > /\tau \ a_{CP}^{ind}$$
 and $A_{\Gamma} = -a_{CP}^{ind}$

where $\Delta < t >$ is the difference of the average proper time of KK and $\pi\pi$

• Slope in LHCb result due to small KK/ $\pi\pi$ lifetime acceptance diff.: $\Delta < t > /\tau = 0.10 \pm 0.01$

→ Agreement with no CP violation CL = 20%



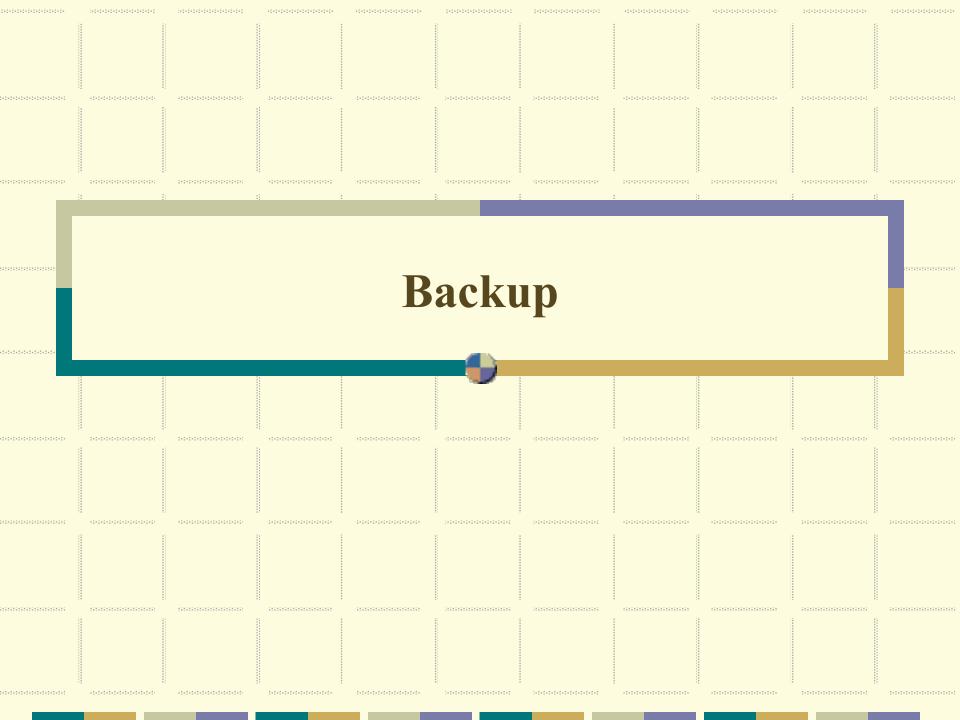
Expected more results soon

- Other charm analysis ongoing:
 - Time-dependent measurements of mixing parameters
 - Spectroscopy and production measurements
 - Searches of the rare D decays

But this are only the first steps...

... we are running

towards many new results

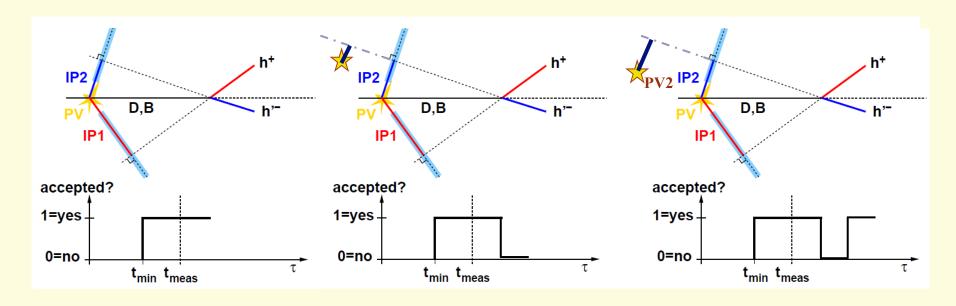


► LHCb produces its first charm physics results on 2010 data (total L ~38 pb⁻¹):

- Search of CPV in $D^+ \rightarrow K^-K^+\pi^+$ [LHCb paper in preparation]
- Measurement of $A_{CP}(K^-K^+)$ $A_{CP}(\pi^-\pi^+)$ = (-0.28 ± 0.70 ± 0.25) % [LHCb-CONF-2011-023]
- Measurement of $A_{\Gamma} = (-0.59 \pm 0.59 \pm 0.21)$ % [LHCb-CONF-2011-046]

Even 2010 data interesting: with 38 pb⁻¹, already competitive with B-factories

- The data collected in 2011 so far are an order magnitude higher statistiscs (more than 621 pb⁻¹)
 - Precision searches for CP violation to really probe new physics in many key areas!



Acceptance evaluation

- Determine trigger & selection acceptance on an event-by-event basis, the so called 'Swimming method'.
 - Evaluate the event acceptance for many different lifetimes by moving the PV along the D⁰ momentum
 - In events with multiple PV → more turning points

