Search For Stopped Long-Lived Particles in ATLAS

Josh Cogan

Data Candidate

Motivation

- All the normal reasons we like SUSY and...
- Split-SUSY provides a mechanism:
 - $-\ ilde{g}$ tunnels through SUSY scale $\ ilde{q}$
 - Allows long lived \tilde{g} with energetic decay
- Motivated by sBBN ⁷Li / ⁶Li discrepancy
 - Convenient delayed neutron source: τ ~< 100 sec

Signature Overview

- Produce two \tilde{g} in pp collision, which pick up SM quarks from the vacuum \rightarrow R-hadron
- Travels into ATLAS detector volume
 - Loses energy through dE/dX and nuclear scatters
 - Can exchange charge
- Stops in calorimeter
- Decays at a later time
- Detect decay event only

Search Strategy

- Leverage long lifetime (τ > 100 ns):
 - R-hadrons decay significantly out of time
 - Look for decays in empty bunches
- Cosmic muon events dominate background
 - Don't scale with luminosity! Compare 2010 regions

Backgrounds: Cosmics

Background Sources: Noise

- Plots show events after muon segment veto
- Events show strong noise signature!
- Control noise with jet shape and jet location

Background Sources: Beam

- Beam gas and pp collisions: ID Tracks, P_T^{miss}/P_T^0
 - Rare events easily removed in empty bunches
- Halo muons often leave muon segment

Studied in unpaired bunches and control region

Background Estimation 1/2

- Beam halo changes with current & conditions
 - Affected by vacuum, collimators, # bunches ...
 - Need an orthogonal sample in search region
- Unpaired can provide pure beam halo sample
- Apply "ABCD"-method to estimate beam halo yield without a segment in the empty bunches!

Halo	With Muc	n No Muon
Unpaired	2021	2
Empty	429	.43±.3!!

The estimate (1st Jet E > 50 GeV)

Beam Halo ≈ 0 (1st Jet E > 100 GeV)

Orthogonal samples

Background Estimation 2/2

• Cosmics scale perfectly with livetime $\frac{N_s}{T_s} = \frac{N_b}{T_b}$

• For limit setting conservatively ignore noise

Cosmics (weighted)	Background	•	Search
Jet Cleaning	5859 ± 42	5859 ± 56	5615
Muon Veto	4.4 ± 1.1	4.6 ± 1.6	9
1st Jet Energy > 100	0.3 ± 0.3	0.58 ± 0.58	0

Event Displays
Limit Setting

Signal Simulation

Additional Signal Efficiency Loss

- Stopping: ~10% R-Hadrons remain in detector
 - Depends on matter interaction model. Studied 2
- Timing: some R-hadrons decay out of a run or
 - in filled bunch
 - $-37\% 10^{-5} < \tau < 10^{3}$
 - Used 2010 schedule
- Random µ segment causes veto
 - Used random trigger

Signal Summary

- Left: Table of efficiencies effecting final yield
- Right: Locations of R-Hadron if it stopped

Marginal Efficiency	Nota Bene	Value @ 200 GeV	Value @ 600 GeV	
Stopping	"Generic"	11%	11%	
Timing	10 ⁻⁵ < τ < 10 ³	37% (not affected by mass)		
Accidental µ	For all models	93% (not affected by mass)		
Recon.	Total	0.94%	8.33%	
	Preselection	41.2%	37.4%	
	Jet Cleaning	25.0%	31.3%	
	Muon Veto	90.2%	71.1%	
	1st Jet E > 100	10.1%	100%	
Total	"Bottom line"	.036%	.31%	

DPF/LL Stopped Particles Brown University, Aug 12 2011

Final Yield for 1 Jet Bin

Final Yield for >1 Jet Bin

Number of Entries

Fraction of Jet Energy in Tile Calorimeter

13

Systematic Uncertainties

- R-hadron Matter Interactions, nuclear xsection
 - Measure stopping fraction varying xsec x2, /2
- Selection Criteria: conservatively varied efficiency within allowed region→9.9%
- Calorimeter Timing: ε_{recon} varies with decay time
- L1 trigger efficiency drops when energy split across BCIDs

Relative Timing Offset (ns)

Limit Setting

- Use CL_s to set 95% confidence upper limit
 - Applies to # signal events model produces
- Set limit for 2 measurements (1 vs >1 Jets)
 - Use one with strongest expected limit
- Divide out efficiencies (page 12) derive limits...
 - Generic $M_{\tilde{g}} > ???$ GeV for $10^{-5} < \tau < 10^{3}$ seconds
 - Regge $M_{\tilde{g}} > ???$ GeV for $10^{-5} < \tau < 10^{3}$ seconds

# of Events		Fractional Error			Limits	
# Jets	Observed	Expected	Signal	Bkgnd	Expected	Observed
1	0	.3	.23	1.06	- 4	ETETED
>1	1	.6	.23	1.06	CLAS'	D.L.

ATLAS Preliminary

Conclusion

- ATLAS search for decays in empty bunches
- 3 samples varied by x400 in expected S/B
- 95% CLs limit for $10^{-5} < \tau < 10^{3}$ seconds
 - Generic $M_{\tilde{g}} > ???$ GeV
 - Regge $M_{\tilde{g}} > ???$ GeV
- Big gains in 2011!
 - More empty bunches
 - Empties inside trains
 - Femtobarns of data!

17

Back Up Slides

Trigger Strategy

- L1_J10_EMPTY = Normal L1_J10 && "empty"
- Empty defined at LHC ramp using BPTXs
 - Requires no filled bucket in either direction
 - Requires no paired bunch 5 before or 20 after
- Bunch * Hour = \sum_{runs} # Empty Bunches Run Duration

Region Name	Periods	Int. Lumi (pb ⁻¹)	Live Time (Bunch Hours)
Background	A-D	0.26	1,070,000
Control	E-F	2.56	550,000
Search	G-I	30.7	317,000
Total	2010 A-I	33.47	1,937,000

Data Sample Used

- Empty J10 and RD1 go to CosmicCalo stream
- Used ESD for the cell level information
- Heavily rely on Data Quality flags
 - Only use data10_7TeV tag
 - ATLAS Ready4Physics && LHC stablebeams
 - LAr and Tile must be in "y+" states
- Unpaired J10 to study beam backgrounds
 - Go to JetTauEtMiss stream

Selection Criteria

- Split into 1 and >1 jet bins
 - Signal regions with leading jet > 50 or 100 GeV

Number of Jets	1	>1	Rejects
Number µ Segments	= 0	= 0	Cosmics + beam halo
MET / 1st Jet PT	> 0.5	> 0.5	pp + beam gas
ID Tracks	= 0	= 0	pp + beam gas
Jet η	< 1.2	< 2.2	Noisy endcaps
Jet Width	> 0.04		Noise
Jet Fraction Tile	> 0.5	1 st or 2 nd > 0.1	Beam halo + noise
N90	> 3	1 st Jet > 3	Noise+cosmics
Jet Energy	> 50 GeV	1 st > 50 and 2 nd >15	*Also measure 1st > 100

Signal Simulation 2/3

- MC10 Pythia: $gg \to \tilde{g}\tilde{g}$ and $q\bar{q} \to \tilde{g}\tilde{g}$
- Using standard ATLAS G4 R-Hadron extension
 - Handles EM dE/dx and nuclear interactions
- Complimentary matter interaction models
 - Generic, Regge, Intermediate
 - Different nuclear interaction cross sections and R-Hadron spectra
- Used Prospino (@NLO) and CTEQ6.6 for cross section to produce gluinos

Background Sources: Noise

- Plots show events after muon segment veto
- Events show strong noise signature!
- Control noise with jet shape and jet location

DPF/LL Stopped Particles Brown University, Aug 12 2011

Backgrounds: Cosmics

Final Yield for 1 Jet Bin

Search Strategy

- Leverage long lifetime (τ > 100 ns):
 - R-hadrons decay significantly out of time
 - Look for decays in empty bunches
- Cosmic muon events dominate background
 - Don't scale with luminosity! Compare 2010 regions

