Search for long-lived massive particles at ATLAS

Vivek Jain, Indiana University
(for the ATLAS Collaboration)
DPF, Aug 9-13, 2011
Outline

- **Introduction**
 - Long-lived, massive particles
 - ATLAS detector

- **Results** - *(available at this link)*
 - Displaced vertices
 - R-hadrons
 - Bound states of coloured sparticles & SM partons

- **Summary**
Motivation

- Long-lived massive particles are in many BSM models with a variety of signatures.
 - Lifetimes range from microns to meters, β can be much less than 1, $q>>e$...

- Many of these models are already constrained by data, but the use of lifetime as a search parameter is uncharted territory
 - Displaced vertices, are in R-parity violating SUSY ($\sim\chi^0$ is the LSP and decays), Split SUSY, Hidden valley models, Stealth SUSY…
Search for long-lived massive particles

- **R-hadrons**: Coloured sparticles can hadronize into long-lived, bound hadronic states, e.g., ~g+g, ~g+qqbar, ~q+q, etc.
 - They are in R-parity conserving SUSY, Split SUSY, Universal Extra Dimensions
 - They can start out as neutral and due to interactions in the detector become charged and be detectable only further out in radius
 - They can also be **Highly ionizing particles, q>>e**, in models of Q-balls, micro black hole remnants, magnetic monopoles, dyons…

- **Stau leptons**, e.g., in GMSB models
Inner Detector (|\(\eta\)| < 2.5, B=2T):
- Si Pixels, Si strips, Transition Radiation detector (straws)
- Precise tracking and vertexing, e/\(\pi\) separation
- Momentum resolution:
 \[\sigma/p_T \sim 3.8 \times 10^{-4} p_T (\text{GeV}) \pm 0.015 \]
- Length: \(\sim 46\) m
- Radius: \(\sim 12\) m
- Weight: \(\sim 7000\) tons
- \(\sim 10^8\) electronic channels
- 3000 km of cables

Muon Spectrometer (|\(\eta\)| < 2.7):
- Air-core toroids with gas-based muon chambers
- Muon trigger and measurement with momentum resolution < 10% up to \(E_\mu \sim 1\) TeV
- Length: \(\sim 46\) m
- Radius: \(\sim 12\) m
- Weight: \(\sim 7000\) tons
- \(~10^8\) electronic channels
- 3000 km of cables
- 3-level trigger reducing the rate from 40 MHz to \(\sim 200\) Hz

EM calorimeter: Pb-LAr Accordion
- e/\(\gamma\) trigger, identification and measurement
- E-resolution: \(\sigma/E \sim 10\%/\sqrt{E}\)

HAD calorimetry (|\(\eta\)| < 5):
- Segmentation, hermeticity
- Fe/scintillator Tiles (central), Cu/W-LAr (fwd)
- Trigger and measurement of jets and missing \(E_T\)
- E-resolution: \(\sigma/E \sim 50\%/\sqrt{E} \pm 0.03\)

The analyses use a variety of triggers
Search for displaced vertices (I)

- Current analysis uses a R-parity violating framework to analyze the results
 - LSP, e.g., $\tilde{\chi}^0$, is produced via strongly produced squarks and gluinos, i.e., large production x-section. It is unstable, and can decay within the detector.

\[\tilde{N}_1 \xrightarrow{\ell} \tilde{\ell} \lambda \nu'' \]

(a)

\[\tilde{N}_1 \xrightarrow{\nu''} \tilde{\ell} \lambda \ell' \]

(b)

\[\tilde{N}_1 \xrightarrow{\ell} \ell' \chi' q \]

(c)

\[\tilde{N}_1 \xrightarrow{\nu} q \lambda' \]

(d)

\[\tilde{N}_1 \xrightarrow{\tilde{\nu}} q' \chi' \]

(e)

\[\tilde{N}_1 \xrightarrow{q} q' \ell \text{ or } \nu \]

(f)

Search in the $qq'\mu$ final state
Final state contains many charged tracks and a muon that come from a displaced vertex

- Muon trigger, \(p_T > 40 \) GeV, in 2010 data (33 pb\(^{-1}\))
- Vertex charged tracks, with \(|d_0| > 2 \) mm
 - Muon not required to be in vertex (improvement for future)
- Remove contamination from material interactions, (material veto map), Ks… Require Vertex to have \(N_{trk} \geq 3 \), Mass > 10 GeV
- Search for displaced vertices for \(R < 180 \) mm

Vivek J
Comparing Data with Monte Carlo

- Loosen selection, i.e., mass (<10 GeV), # trks ≥ 2 to stay away from signal region

- Good agreement
Signal Efficiency as a function of R for 700 GeV squarks & (top) 494 GeV neutralinos (bottom) 108 GeV neutralinos

Signal Efficiencies as R vs. Z (red ~ 10%, blue < 1%
White spaces are vetos using material map)

Vivek Jain
• Use CLs w/ one-sided profile likelihood as test statistic.
• Each \(\tau \) treated as number counting experiment with errors on \(\varepsilon \), lumi and background as nuisance parameters
• \(\sigma \cdot \text{detector acceptance} \cdot \varepsilon < 0.09 \text{ pb} \) @ 95\% CL for any signal

Results:

observed events in signal region: 0

Background estimate (MC and a data driven cross-check): < 0.03 @ 90\%CL

Prospino signal x-sections from 0.2 fb (1.5 TeV \(\tilde{q} \)) to 540 pb (150 GeV \(\tilde{q} \))
R-hadrons

- Bound states of Sparticles and SM partons.
 - Slow-moving, Lifetime long enough to traverse detector
 - Can be neutral at production, and become charged later

- Possibility of direct pair production via strong force implies large production cross-sections.
 - MC uses specialized routines to create R-hadrons and handle their interactions in detector

- Complementary analyses – both use 2010 data
 - One uses Inner Detector & Calorimeter
 - Uses Missing Energy trigger (34 pb⁻¹)
 - Other uses Muon Spectrometer
 - Uses Muon trigger (37 pb⁻¹)
R hadrons in ID and Calorimeter

- Use dE/dx in Pixels & Time from Tile Cal.
 - Get independent measurements of β
- Combine β with momentum and get two estimates of mass.
 - MIP compatible deposits in CAL
 - Track pT > 50 GeV

Resolution ~ 10%
Distributions after selection cuts:

dE/dx > 1.8 MeV g\(^{-1}\) cm\(^2\) (pixel),
\(\beta < 1\) (tile),
pT > 50 GeV

2-D plot of mass estimates in Tile calorimeter vs pixels.

Background estimates use random combinations of track pT & dE/dx and \(\beta\) to construct a mass distribution

Vivek Jain
• Combine the two mass estimates to reduce background:
 \[m_{\text{Pixel}} > \mu_{\text{Pixel}} - 2*\sigma_{\text{Pixel}} \quad \& \quad m_{\text{Tile}} > \mu_{\text{Tile}} - 2*\sigma_{\text{Tile}} \]
 - \(\sigma \approx 10\%-20\% \) for Pixels, \(\approx 20\% \) for Tile
• Background estimate < 1 event for \(M > 100 \) GeV
• No events in data with \(M > 100 \) GeV
• Limits: Use cross-sections from PROSPINO, signal \(\varepsilon \) and CLs method

• ATLAS limits:
 \[M(\text{sbottom}) > 294 \text{ GeV} \]
 \[M(\text{stop}) > 309 \text{ GeV} \]
 \[M(\text{gluino}) > 586 \text{ GeV} \]
• Previous limits are from
 ALEPH(sbottom), CDF (stop)
 CMS (gluino w/ 3.1 pb\(^{-1}\))

New CMS results w/ 1 fb\(^{-1}\):
\(~t > 620 \) GeV, \(~g > 899 \) GeV
R hadrons in Muon Spectrometer

- Can be electrically neutral at production, and get a charge from interactions in Calorimeter

- Reconstruct candidates using **only** the Muon Spectrometer
 - Determine β by minimizing χ^2 between available timing measurements and timing expected from hypothesized value
 - β values in various layers have to be consistent

\[\sigma \approx 0.051 \]
Analysis details

- Trigger requires MS only $p_T > 40$ GeV
 - Offline selection: $p_T > 60$ GeV & $p_T < 1$ TeV (latter to remove bad reconstructions)
- Reject cosmic muons by requiring tracks to point back toward Primary Vertex. No back-to-back μ
 - Estimate < 1 cosmic μ background in signal region
- Remove $Z \rightarrow \mu\mu$
- Determine Mass of candidate using momentum and β information. Reject muons with $\beta < 0.95$
- Background mainly due to high p_T muons with mismeasured β. Data-driven technique as for previous analysis
95% CL Limits on R-hadron masses:

- g-ball fraction of 0.1, $M > 544$ GeV
- g-ball fractions of 0.5 and 1.0, $M > 537$ GeV and 530 GeV

The systematic uncertainties on the signal yield (based on Split SUSY) & background estimate are 6% and 20% respectively.
Summary

- Many exciting results using lifetime as a search parameter
 - Not mentioned here: Results on stable stau search, and R-hadron search with large q (6-17 e)
- Improvements in analysis techniques and more data in the pipeline
- LHC performing very well. Already have 1.7 fb$^{-1}$ and more coming. Stay tuned!
Extra stuff
Inner Detector

ID contains 3 sub-detectors (resolutions)
- Pixel detector: 10/115 µm in Rφ/ζ
- Silicon strip detector: 17/580 µm
- Transition radiation tracker: 130 µm Rφ

2 T solenoidal magnetic field

Coverage: |η| < 2.5 (2.0 for TRT)
Accurate track & vertex reco.
Resolution goal:
\[\sigma_{p_T}/p_T = 0.05\% \, p_T \oplus 1\% \]
In selection of J/ψ candidates we consider two types of muon:

Combined muons have an ID track matched to a MS track and refitted through the detector to give the best measurement. At least one muon in a pair must be combined.

Tagged muons are ID tracks matched to muon segments when extrapolated to the MS. Such muons generally have low momentum.

Can reconstruct muons with $Pt>1\text{ GeV}$
Muon Spectrometer

- Precision tracking chambers and trigger chambers
 - Monitored drift tubes
 - Cathode drift chambers
 - Thin-gap chambers
 - Resistive plate chambers
- $|\eta|$ coverage up to 2.7
- Magnetic field produced by 3x8 air-core toroids
 - Barrel/End Cap toroids
 - Complex field map
 - $B \sim 0.5T$, but varies in R/Z
 - Bend in barrel is in Z
 - Bend in ECap is along R

$\sigma_{p_T}/p_T=10\%$ at $p_T = 1 \text{ TeV}^{-}$
Check efficiency using cosmics (muons)

Ratio between the d_0 of cosmic-muons and the d_0-dependence of the signal-MC muon reconstruction efficiency given the selection cuts
R-hadron search using Pixels and Tile Cal.
Table 2: Expected number of signal and background events for the pixel detector and the tile calorimeter separately and combined for gluino mass hypotheses between 100 and 700 GeV. The fitted means and widths of the estimated mass distributions are shown on the left. To the right of the vertical line, the number of signal and estimated background events are shown in the relevant signal regions, along with the number of events observed in data. Systematic uncertainties are discussed in Section 7.

<table>
<thead>
<tr>
<th>Nominal mass (GeV)</th>
<th>μ_{Pixel} (GeV)</th>
<th>σ_{Pixel} (GeV)</th>
<th>μ_{Tile} (GeV)</th>
<th>σ_{Tile} (GeV)</th>
<th>No. of signal cand. (\tilde{g})</th>
<th>Est. no. of bkg. cand.</th>
<th>N_{Data} Comb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>107</td>
<td>10</td>
<td>109</td>
<td>19</td>
<td>15898</td>
<td>61</td>
<td>5.4</td>
</tr>
<tr>
<td>200</td>
<td>214</td>
<td>24</td>
<td>211</td>
<td>36</td>
<td>1417</td>
<td>19</td>
<td>0.87</td>
</tr>
<tr>
<td>300</td>
<td>324</td>
<td>40</td>
<td>315</td>
<td>56</td>
<td>202</td>
<td>6.5</td>
<td>0.22</td>
</tr>
<tr>
<td>400</td>
<td>425</td>
<td>67</td>
<td>415</td>
<td>75</td>
<td>43</td>
<td>3.4</td>
<td>0.082</td>
</tr>
<tr>
<td>500</td>
<td>533</td>
<td>94</td>
<td>513</td>
<td>106</td>
<td>11</td>
<td>1.82</td>
<td>0.044</td>
</tr>
<tr>
<td>600</td>
<td>641</td>
<td>125</td>
<td>624</td>
<td>145</td>
<td>3.1</td>
<td>1.08</td>
<td>0.028</td>
</tr>
<tr>
<td>700</td>
<td>727</td>
<td>149</td>
<td>714</td>
<td>168</td>
<td>0.99</td>
<td>0.74</td>
<td>0.018</td>
</tr>
</tbody>
</table>

Vivek Jain

Background estimation technique

- The background is mainly composed of high pT muons with mis-measured β.

- Data-driven estimate relies on two premises:
 - (1) S/B ratio before applying requirements on β is small
 - (2) pdf for μ resolution is independent of μ source and its P.

- For each μ candidate a random β is drawn from the muon β pdf. If $\beta < 0.95$, mass is calculated using reconstructed P of and the random β.

- Similar technique for analysis using ID & Cal