Search For High-Mass States with Lepton Plus Missing E_T Using ATLAS

James Degenhardt (UPenn) on behalf of the ATLAS Collaboration DPF Brown University August, 2011

Introduction

- Many BSM theories (i.e. SU(2)₁ x SU(2)₂ x U(1)) predict additional heavy bosons that will decay to a lepton (electron or muon) and neutrino.
- Use the Sequential Standard Model (SSM) W Prime as a benchmark model.
- LHC, with its high energy center of mass provides a unique opportunity to extend searches for W Prime into new energy regime.
- Previous search has been performed with 36 pb⁻¹, set limits at 1.35 TeV. Phys. Lett. B, 701:50-69,2011, arXiv: 1103.1391
- With > I fb⁻¹ of data recorded, ATLAS has performed a search for large transverse mass resonances of a lepton and a neutrino from pp collisions at a center-of-mass energy of 7 TeV.

ATLAS

Search Strategy

- \bullet Select events with high pt leptons and large missing $E_{T}.$
- Use m_T as the observable to perform our search with.

$$m_{\rm T} = \sqrt{2p_{\rm T}(l)E_{\rm T}^{\rm miss}\cos(1-\phi_{l\nu})}$$

- Look for a significant excess above background expectations using bayesian analysis.
- If no excess is observed, then place limits on the σ^*BR production using a bayesian method.

Backgrounds

- SMW production is the largest background and is irreducible.
- Z boson production, where one lepton is not reconstructed, mimicking real missing E_T.
- Dibosons + top pair production are the next largest that have real missing E_T and isolated leptons. These are estimated from MC samples.
- QCD is estimated from data using an ABCD method.
- Cosmics are a function of live detector time and are considered negligible for the current data set.

Process	<u> </u>	<u>Order</u>
VV→Iv	10460	NNLO
$\frac{Z/\gamma^* \rightarrow II}{(m_{Z/\gamma^*} > 60 \text{ GeV})}$	989	NNLO
tt→l+X (m _{tt} = 172.5 GeV)	89.4	approx - NNLO

Dibosons x-sections using LO

DPF

Event Selection

- Require only events where all of the sub-systems used in the analysis were fully operational.
- Require that events do not contain poorly reconstructed jets.
- Require a primary vertex with at least three reconstructed tracks, and is within 200 mm of the center of the interaction region.
- Require the impact parameters of the selected leptons to be associated with the primary vertex.

Primary Vertex Position

DPF

Muon Event Selection

- Single Muon Trigger with $p_T > 20$ GeV.
- Well reconstructed combined muon with:
 - pT > 25 GeV
 - $|\eta| < 1.0 \text{ or } 1.3 < |\eta| < 2.0$
 - Demand three stations crossed by the muon to ensure good momentum measurement.
 - Require the difference between the ID and MS q/p measurements to be within 5σ of their fit errors.
 - Track isolation: Σ p_T(tracks, R<0.3) < 0.05 p_T (muon).
- Require large missing $E_T > 25$ GeV.
- Veto additional high pt muons.

Electron Event Selection

- Require a single electron trigger with E_T > 22 GeV.
- Reconstructed electron requirements:
 - E_T(electron) > 25 GeV
 - |η| < 1.37 or 1.52 < |η| < 2.47
 - A well reconstructed energy cluster with a shape consistent the an electron that is also matched to a track.
 - Calorimeter Isolation, Σ E_{TCalo}(R<0.4) < 9 GeV
 - a b-layer hit
- Require large missing $E_T > 25$ GeV.
- The ratio of the missing E_T > 0.6 E_T (electron).
- Veto additional electrons.

Systematics

- Both channels have a correlated systematic uncertainties from Luminosity and MC generators.
- Other correlations are treated as negligible.
- Relative uncertainties at the 1500 GeV mass point.

	$\varepsilon_{ m sig}$		$N_{ m bg}$	
Source	$e\nu$	μu	$e \nu$	μu
Efficiency	2.7%	3.9%	2.7%	3.8%
Energy/momentum resolution	0.3%	2.3%	2.9%	0.6%
Energy/momentum scale	0.5%	1.3%	5.2%	3.0%
QCD background	-	-	10.0%	1.3%
Monte Carlo statistics	2.5%	3.1%	9.4%	9.9%
Cross section (shape/level)	3.0%	3.0%	9.5%	9.5%
All	4.7%	6.3%	18%	15%

Results

- The m_T distributions of the electron and muon channel is shown.
- No excess with a significance above 3 σ (0.00135) is observed, in either channel, nor in the combination.
- 95% CL limits are set using a Bayesian analysis method.
- Bayesian results are identical to CLs results.

Highest m_T Muon Event

Highest m_T Electron Event

Determining Signal Significance

- For each mass point the number of events above m_{T min} is compared with the expected background.
- m_{T min} is optimized on the expected significance of a given mass.
- Using Poisson statistics a likelihood is constructed comparing the expected number of events with the observed number of events.
- Systematic uncertainties are treated as gaussian nuisance parameters.
- Only the luminosity and generator MC uncertainties are treated as correlated, other correlations are considered negligible.

$$N_{\rm exp} = \epsilon_{\rm sig} L_{\rm int} \sigma B + N_{\rm bg}$$

$$\mathcal{L}(\sigma B) = \frac{N_{\rm exp}^{N_{\rm obs}} e^{-N_{\rm exp}}}{N_{\rm obs}!}$$

Determining Limits

- Using Bayes theorem a posterior probability is determined from the likelihood and assuming a flat prior.
- A discriminant is then constructed using the ratio of the maximum posterior probability to the posterior probability for no signal.
- A p-value is determined from this discriminant by seeing how often a background only hypothesis will give this outcome (or higher).
- Limits for 95% CL exclusion are determined by finding the smallest value of σ*BR for which the pvalue of the posterior probability is 0.05.

 $P_{\text{post}}(\sigma B) = N\mathcal{L}(\sigma B)P_{\text{prior}}(\sigma B)$ $B_{\rm disc} = \max(P_{\rm post})/P_{\rm post}(0)$ $CL_{\text{bayes}} = \int_{0}^{0} P_{\text{post}}(x) dx$ $\max(P_{\text{post}})$ dP/d(oBR) $P_{\rm post}(0)$ σBR

DPF

Aug. 12, 2011

Individual Limits

- The individual σ^*BR limits for several mass points.
- The most discrepant point is the 500 GeV mass point in both channels.
 - Future analysis will include lower mass points as well as higher mass points.

Combined Limits

	$m_{W'}$	[TeV]
	Exp.	Obs.
$e\nu$	2.17	2.08
μu	2.08	1.98
both	2.23	2.15

Comparison with Previous Publications

- In 2010 ATLAS Published with 36 pb⁻¹.
- CDF has a better exclusion at low mass.
- CMS 2010 not shown
 because they are presenting newer limits at this conference.

Normalized Production Limits ($\sigma_{\text{Limit}} / \sigma_{\text{SSM}}$) vs. Mass

Conclusion

- ATLAS has completed an update to its search for high m_T resonances from a lepton and missing E_T.
- No significant excess has been observed yet.
- 95% CL limits have been set on σ*BR for W Prime production to I+v at 2.15 TeV.
- Analysis is submitted to PLB.
- arXiv: 1108.1316v1

Expected Sensitivity vs. Center-of-Mass Energy

J. Degenhardt

Muon Resolution

- Muon transverse momentum resolution is about 15% at 1 TeV.
- Already near design resolution.
- Alignment efforts are continually improving the resolution at high momentum.

Muon Resolution

- Contributions to muon resolution at high transverse momentum from the muon spectrometer only.
- At large muon momentum the muon spectrometer dominates the combined measurement.
- The inner detector still does improve the momentum at high pt when combined with the MS.

Electron Resolution

- Electron energy resolution varies with eta.
- At |η| of 1.65, resolution at 50 GeV is about 3.5%.
- At |η| of 0.3, resolution at 50 GeV is about 1.3%.

Limit Inputs

- Inputs to the limit calculation at different mass points.
- m_{T min} is chosen to minimize the expected σ*BR limit.

$m_{W'}$ [GeV]	m_{Tmin} [GeV]		$arepsilon_{ m sig}$	$N_{ m sig}$	$N_{ m bg}$	$N_{ m obs}$
500 398	$e\nu$	0.388 ± 0.019	6930 ± 620	101.9 ± 10.8	121	
	390	μu	0.252 ± 0.015	4500 ± 430	63.7 ± 6.5	91
600	447	$e\nu$	0.456 ± 0.022	3910 ± 330	62.1 ± 7.1	69
000	441	μu	0.286 ± 0.016	2450 ± 220	41.8 ± 4.7	57
750 569	562	$e\nu$	0.429 ± 0.020	1420 ± 110	20.7 ± 3.7	20
100	502	μu	0.293 ± 0.017	970 ± 79	14.3 ± 1.4	20
1000 708	$e\nu$	0.482 ± 0.022	417 ± 35	$6.13 \hspace{.1in} \pm \hspace{.1in} 0.92$	4	
	100	μu	0.326 ± 0.019	282 ± 26	$4.98 \ \pm \ 0.54$	4
1250 794	704	$e\nu$	0.527 ± 0.024	143 ± 14	3.09 ± 0.49	3
	134	μu	0.367 ± 0.021	99 ± 10	$2.87 \ \pm \ 0.34$	3
1500 891	801	$e\nu$	0.541 ± 0.026	49.6 ± 6.0	1.75 ± 0.32	2
	031	μu	0.374 ± 0.024	34.4 ± 4.4	1.57 ± 0.23	2
1750 1000	1000	$e\nu$	0.515 ± 0.024	17.3 ± 2.4	0.89 ± 0.20	1
	1000	μu	0.338 ± 0.020	11.4 ± 1.7	0.82 ± 0.14	1
2000	1199	$e\nu$	0.472 ± 0.023	6.16 ± 0.99	0.48 ± 0.10	1
2000 1.	1122	μu	0.323 ± 0.021	4.21 ± 0.70	0.44 ± 0.09	1
2250	1122	$e\nu$	0.415 ± 0.019	2.84 ± 0.50	0.48 ± 0.10	1
		μu	0.288 ± 0.018	1.97 ± 0.36	0.44 ± 0.09	1
2500	1199	$e\nu$	0.333 ± 0.018	0.81 ± 0.16	0.48 ± 0.10	1
2000		μu	0.221 ± 0.017	0.53 ± 0.11	0.44 ± 0.09	1

95% CL Limits by Mass Bin

- 95% CL limits on σ*BR for different mass points.
- "S" is selection efficiency uncertainty only.
- "SB" is selection efficiency and background level uncertainties only.
- "SBL" is the final limit with all nuisance parameters (including the luminosity uncertainty).

$m_{W'}$		95%	CL lim	it on σB	8 [fb]
[GeV]		none	\mathbf{S}	SB	SBL
	$e\nu$	97	98	117	121
500	μu	171	174	186	191
	both	109	110	127	130
	$e\nu$	49	49	59	61
600	μu	99	100	108	110
	both	55	55	64	65
	$e\nu$	23.0	23.1	28.1	28.5
750	μu	49.2	49.8	50.9	51.7
	both	23.7	23.8	27.8	28.1
	$e\nu$	10.1	10.2	10.5	10.6
1000	μu	16.1	16.3	16.5	16.7
	both	7.3	7.3	7.6	7.7
	$e\nu$	9.8	9.9	10.0	10.1
1250	μu	14.4	14.5	14.6	14.7
	both	7.3	7.3	7.4	7.5
	$e\nu$	8.8	8.9	9.0	9.0
1500	μu	13.0	13.2	13.2	13.3
	both	6.6	6.6	6.7	6.7
	$e\nu$	7.8	7.9	7.9	7.9
1750	μu	12.0	12.1	12.1	12.2
	both	5.6	5.6	5.7	5.7
	$e\nu$	8.9	9.0	9.0	9.1
2000	μu	13.2	13.3	13.3	13.4
	both	6.6	6.7	6.7	6.7
	$e\nu$	10.2	$1\overline{0.2}$	$1\overline{0.3}$	$1\overline{0.3}$
2250	μu	14.8	14.9	14.9	15.0
	both	7.5	7.5	7.6	7.6
	$e\nu$	12.7	$1\overline{2.8}$	$1\overline{2.8}$	$1\overline{2.9}$
2500	μu	19.2	19.5	19.6	19.7
	both	9.5	9.6	9.6	9.6

