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Elastic Scattering
• The particles after scattering are the 

same as the incident particles

• =p/p=0 for elastic events;

• The cross section can be written as:

• This has the same form as light 

diffracting from a small absorbing disk, 

thus processes with one or more intact 

protons are  referred to as diffraction

• Characterized by a steeply falling |t| 

distribution and a dip where the slope 

becomes much flatter 

Elastic “dip” 

Structure from

Phys. Rev. Lett. 

54, 2180 (1985).

t = -(pi-pf)
2

 
2

0

)(1 



pbe

dtd

dtd bt

t




Andrew Brandt UTA DPF 2011 Brown University
2



Forward Proton Detector

There are 8 quadrupole spectrometers  4 each (Up, Down, In, Out) on 

the outgoing proton (P) and anti-proton (A) sides, with each 

spectrometer  comprised of two detectors (1, 2)

Use Tevatron lattice and scintillating fiber hits to reconstruct  and |t| 

of  scattered protons (anti-protons) 

The acceptance for |t|>|tmin| where tmin is a function of pot position:

for standard operating conditions  |t| > 0.8 GeV2
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• 3 layers in detector: U and V at 45o

degrees to X, 90o degrees to each other

• Each layer has two planes (prime and 

unprimed)  offset by ~2/3 fiber

• Each channel contains four fibers 

• Two  detectors in a spectrometer

• Scintillator  for timing (primariliy used 

for halo rejection)

1
7
.3

9
 m

m

U

U’
X

X’

V
V’

Trigger

FPD Detectors

Andrew Brandt UTA DPF 2011 Brown University 4



Large β* Store

 In 2005 DØ proposed a store with special optics to maximize the |t| acceptance 

of the FPD

 In February 2006, the accelerator was run  with the injection tune,  β* =1.6m 

(about 5x larger than normal)  

 Only 1 proton and 1 anti-proton bunch  were injected

 Separators OFF (no worries about parasitic collisions with only one bunch) 

 Integrated Luminosity (30 4 nb-1) was determined by comparing the number 

of jets from Run IIA measurements with the number in the  Large β* store

 A total of 20 million events were recorded with a special FPD trigger list 
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Track Finding

• Hit Finding

– Require less than 5 hit fibers per layer  (suppresses beam background)

– Use intersection of fiber layers to determine a hit

• Track Reconstruction.

– For events with good hits in both detectors,  use  the aligned hit values 

and the Tevatron lattice transport equations to reconstruct the proton 

track

A1U
A1I

A1O

A1D

• Alignment

– Use over-constrained tracks that pass through 

horizontal and vertical detectors to do relative 

alignment of detectors and use  hit distributions 

to align detectors with respect to the beam 
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Elastic Spectrometer Combinations

AU-PD combination has the best |t| acceptance

Momentum dispersion in horizontal plane results in more halo 

(beam background) in the IN/OUT detectors, so concentrate on 

vertical plane  AU-PD and AD-PU to maximize |t| acceptance while 

minimizing background

Elastic events have tracks in  diagonally opposite spectrometers
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Detector Positions after Alignment
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Hit Finding

• Combination of fibers in a plane 
determine a segment

• Need two out of three possible 
segments to get a hit

– U/V, U/X, X/V (or U/X/V)

• reconstruct x and y position in 
detector 

• use alignment to go from detector to 
beam coordinates

• Can also get an x directly from the x 
segment (can compare these x 
measurements to measure resolution)
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Fiber Correlations within a Detector

Correlations 
between 
fibers in the 
primed and 
unprimed 
plane of each 
layer in
AU-PD 
elastic 
candidates
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Elastic events have low fiber multiplicity

Layer Multiplicity for Elastic 

Candidates 
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Detector Resolutions

xuv-xx=2
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Halo Rejection
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• The in-time bit is set if a pulse detected in the in-time window

(consistent with a proton originating from the IP)

• The halo bit is set if  a pulse is detected in early time window

(consistent with a halo proton) 

• We can reject  a large fraction of halo events using the timing 

scintillators (depending on the pot locations)
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Correlations Between Detectors

Elastic

Halo

fiducial 

region
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No Early Hits 

No Early Hits 

residual halo 

due to

different 

acceptances of 

the two 

spectrometers

-> fiducial cuts



Measuring Cross Section

1d dN

dt L A dt






 

1. Count elastic events

2. Divide by luminosity

3. Correct for acceptance and efficiency

4. Unsmearing correction for |t| resolution

5. Subtract residual halo background

6. Take weighted average of four measurements

(2 elastic configurations each with two pot positions)
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Corrections:

1  acceptance  (geometrical 

loss due to finite  size of  

opposite spectrometer)

2) Unsmearing correction due 

to beam divergence, |t| 

resolution   (standard 

approach using ansatz 

function)

3) Efficiency: use triggers 

requiring A1-P1 or A2-P2 

hits, offline demand 3rd hit,  

then measure efficiency of 

4th detector 

4) Use side bands to measure 

and subtract background

Correcting Cross Section

“observed”“true”

“smearing”

“unsmearing” or “unfolding”
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Observe expected colinearity between proton and anti-proton

Resolution 

ranges from 0.02 at low

|t| to 0.045 at high |t|

|t|
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Measurement of Elastic Slope (b)

First measurement of b at s=1.96 TeV

•Systematic error dominated by trigger   

efficiency correction (this is likely to be

significantly smaller in final result,  

which just missed the DPF deadline)
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E710/CDF for s=1.8 TeV; expect logarithmic dependence with s

d/d|t| Compared to E710+CDF
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20

d/d|t| Compared to UA4

Slope steeper and slope change earlier for higher s (shrinkage)
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Conclusions

• We have measured d/d|t| for elastic scattering over the range:  

0.2< |t| <1.2 GeV2 the first such measurement at s=1.96 TeV

• For 0.2<|t|<0.6 GeV2 we have measured the elastic slope

b=16.5 ± 0.1 ± 0.8 GeV-2

• We observe that the elastic slope is steeper and changes slope 

earlier than lower energy data such as UA4

Extra Points

• Paper is in final review stages to be submitted to PRD in next few weeks

• Arnab Pal (UTA Ph. D. student) just defended his thesis on 

single diffractive cross section, analysis in early review stages
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