

Division of Particles and Fields of the American Physical Society Brown University August 8-13, 2011

Measurement of Inclusive and Multijet Cross-Sections at DØ

Lee Sawyer

Louisiana Tech University

Presented at DPF2011 Brown University, Providence, RI 10 August, 2011

Fermilab Tevatron - Run II

- 36x36 bunches
- Collision at $\sqrt{s} = 1.96 \text{ TeV}$
- bunch crossing 396 ns
- Run II started in March 2001
- Peak Luminosity: 2-3E32 cm⁻² sec⁻¹
- Run II recorded: ~11 fb⁻¹

Run II Goal: 12 fb⁻¹ end of 2011

The DØ Detector

Resume:

- Good central tracking
 - •Si µstrip tracker
 - Scintillating Fiber Tracker
 - 2T central solenoid
- Excellent Calorimetry
- Wide muon coverage
 - Central and forward toroids

Coordinates Primer:

Unless otherwise noted –

 ϕ = Azimuthal angle

 $\eta = pseudorapidity = -ln(tan(\theta/2))$

 $y = rapidity = \frac{1}{2} ln [(1+\beta cos\theta)/1-\beta cos\theta)]$

Calorimeter Details: $\eta=0.0$

- -IAr/U primarily
- Four EM layers (~20 X₀)
- -3 to 4 Hadronic Layers (7 to 8 $X_{\rm I}$)
- 0.1 x 0.1 segmentation in $\Delta\eta$ x $\Delta\varphi$ (0.05 x 0.05 at EM shower max)

Energy Resolution:

e:
$$\sigma_E / E = 15\% / \sqrt{E} + 0.3\%$$

$$\pi$$
: $\sigma_E / E = 45\% / \sqrt{E} + 4\%$

Jet Production

largest high pT cross section at a hadron collider

→ highest energy reach

In the absence of new physics: Theory @NLO is reliable $(\pm 10\%)$

- → Precision phenomenology
 - broad kinematic reach →
 - sensitivity to PDFs → high-x gluon
 - sensitive to α_s

Unique sensitivity to **new physics**:

- new particles decaying to jets,
- quark compositeness,
- extra dimensions,
- ...(?)...

Comparing Data to Predictions

- Use Jet Definition to relate Observables defined on Partons, Particles, Detector
- Measure cross section for pp-bar → jets on "particle-level"
 - Correct for experimental effects (efficiencies, resolution, ...)
 calculated using a fast detector parametrization
 - Include uncertainties and correlations from jet energy scale, non-pertubative effects & UE, id efficiencies, correction for muons & v's, etc
 - Apply correction to the pQCD calculation
- Comparison to NLO pQCD implemented using NLOjet++, FastNLO program
 - Interpolation techniques for PDFs(x,μ), $\alpha_s(\mu)$

Energy scale uncertainty: 1-2%!

A Few Jet Details

- Jet Finding
 - DØ Run II Midpoint Algorithm
 - Can run on calorimeter towers/MC particles/pQCD partons
 - Fixed cone: R_{cone} = 0.5 or 0.7 (most jet studies)
 - pTmin = 8 GeV
 - Use all particles + midpoints btwn jets as seeds.
 - Merge jets if overlap in p_T by more than f = 50%.

- Jet Energy Scale (JES)
 - $E_{particle} = E_{cal} O / (R'S)$
 - E_{cal} = Calorimeter energy
 - O = Offset Energy
 - Electronics noise, U noise, pileup,...
 - S = Showering Correction
 - Response measured in γ + jet
 - EM scale set by Z mass fit.
 - Checked with dijet balance

Inclusive Jets

The inclusive jet cross section – doubly differential vs. (p_T,y)

Phys. Rev Lett. 101, 062001 (2008) Detailed Phys Rev. D in preparation

Analysis details:

- Use L = 0.7 fb-1 with well-measured JES
- Single jet trigger
- Require at least 1 jet with $p_T > 50 \text{ GeV}$

Benefits from:

- high luminosity in Run II
- increased Run II cm energy → high p_T
- hard work on jet energy calibration

steeply falling p_T spectrum:

1% error in jet energy calibration

→ 5—10% (10—25%)

central (forward) x-section

Strong Coupling Constant

Use MSTW2008NNLO PDFs as input

- \rightarrow Cannot test RGE at p_T > 200 GeV (RGE already assumed in PDFs)
- \rightarrow Exclude data points with $x_{\mathrm max} \gtrsim 0.25$ (unknown correlation with PDF uncert.)
- → 22 (out of 110) inclusive jet cross section data points at $50 < p_T < 145 \text{ GeV}$
- → NLO + 2-loop threshold corrections

$$\alpha_s(M_Z) = 0.1161^{+0.0041}_{-0.0048}$$

Phys. Rev. D 80, 111107 (2009)

All uncertainties are multiplied by a factor of 10³

	Total uncertainty	Experimental uncorrelated	Experimental correlated		PDF uncertainty	$\mu_{r,f}$ variation
0.1161	$^{+4.1}_{-4.8}$	± 0.1	$^{+3.4}_{-3.3}$	$^{+1.0}_{-1.6}$	$^{+1.1}_{-1.2}$	$^{+2.5}_{-2.9}$

8

Running of alpha-s (?)

→ so far tested up to $\mu_r = 200 \text{ GeV}$

Could be modified for scales $\mu_r > \mu_0$ e.g. by extra dimensions

> here: $\mu_0 = 200 \text{ GeV}$ and n=1,2,3 extra dim. (n=0 → Standard Model)

 α_s extraction from inclusive jets uses PDFs which were derived assuming the RGE

→ We cannot use the inclusive jets to test the RGE in yet untested region

Dijet Production

<u>Described by eight variables – for example:</u>

$$y^* = \frac{|y_1 - y_2|}{2}$$

1. Dijet Mass Mjj 2.
$$y^* = \frac{|y_1 - y_2|}{2}$$
 or: $\chi_{\text{dijet}} \equiv \exp{(2y^*)}$

features of 2→2 process

PDFs

3.
$$y^{\text{boost}} = \frac{y_1 + y_2}{2}$$

4.
$$\Delta \phi = |\phi_1 - \phi_2|$$

5.
$$p_{T2}/p_{T1}$$

7. M/E (jet2)

Overall rotation in azimuthal angle ←

"hard" higher-order effects

"soft" higher-order effects

irrelevant in unpolarized pp-bar (no reference axis)

Dijet Mass Spectrum

Phys. Lett. B 693, pp. 209-214 (2010)

Measure in six $|y|_{max}$ regions $0 < |y|_{max} < 2.4$

Extend QCD tests to forward region

- → data with Mjj > 1.2 TeV!
- → described by NLO pQCD
- no indications for resonances
- → PDF sensitivity at large |y|-max
- CTEQ6.6 prediction too high
- MSTW2008 consistent w/ data (but correlation of experimental and PDF uncertainties!)

Multi-Jet Production

- Inclusive jet production and dijets sensitive to PDFs and α_s^2
- Three-jet production
 - same PDF sensitivity
 - But sensitive to α_s^3
 - Sensitivity to contribution from higher order diagrams.
- Testing higher-order processes provides direct insight into strong dynamics

Three-jet Mass

First Measurement of three-jet cross section at the Tevatron

- → First corrected 3-jet mass distribution
- → First comparison to NLO pQCD calculations for 3-jet cross sections

Strategy:

Measure cross sect. vs. invariant three-jet mass

in different rapidity intervals
 |y| < 0.8, 1.6, 2.4

For the largest rapidity interval

• for different p_T requirements of the 3rd jet $p_T^{Jet3} > 40$, 70, 100 GeV

Data Set:

- 0.7 fb-1 inclusive jet triggers
- Require at least 3 reconstructed jets passing data quality and jet id criteria
 - Jet 1 $p_T > 150 \text{ GeV}$
 - Jet 2, 3 $p_T > 40 \text{ GeV}$
 - All jets separated by $\Delta R > 1.4 = 2*R_{cone}$

Three-jet Mass

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{3\mathrm{jet}}} = \frac{1}{L \cdot \Delta M_{3\mathrm{jet}}} \cdot \left(\sum_{i=1}^{N_{\mathrm{evt}}} \frac{1}{\epsilon_{\mathrm{v}}^{i}}\right) \cdot C_{\mathrm{unsmear}}$$

"Measurement of Three-Jet Differential Cross Sections $d\sigma_{3jet}/dM_{3jet}$ in pp Collisions at \sqrt{s} = 1.96 TeV" Submitted To Phys. Lett. B

Three-jet mass distrib.

Rapidity dependence

Three-jet mass distrib.

Rapidity dependence

Three-jet mass PDF sensitivity

$$\sigma \propto \alpha_S^3 \cdot PDF^2$$

Calculate χ^2 for all data points including all correlated uncertainties except PDF uncert. (test of central PDF)

For α_c close to the world average, observed lowest χ^2 for the defau

For α_S close to the world average, observed lowest χ^2 for the default scales. Lowest χ^2 for MSTW2008 and NNPDFv2.1

R_{3/2}: Introduction

Goal: test pQCD (and α_s) independent of PDFs

Conditional probability:

 $R_{3/2}$

 $= P(3^{rd} \text{ jet } | 2 \text{ jets})$

 $= \sigma_{3-jet} / \sigma_{2-jet}$

- Probability to find a third jet in an inclusive dijet event
- Sensitive to α_s (3-jets: α_s^3 / 2-jets: α_s^2)
- (almost) independent of PDFs

$\mathbf{R}_{3/2} = \sigma_{3\text{-jet}} / \sigma_{2\text{-jet}}$

Measure as function of two momentum scales:

- p_{Tmax} : common scale for both $\sigma_{2\text{-jet}}$ and $\sigma_{3\text{-jet}}$
- p_{Tmin} : scale at which 3rd jet is resolved (σ_{3-iet} only)

Sensitive to α_s at the scale p_{Tmax}

 \rightarrow probe running of α_s in Tevatron energy regime \rightarrow up to 500 GeV

Details:

- inclusive *n*-jet samples (n=3,2) with n (or more) jets above p_{Tmin}
- |y| < 2.4 for all n leading p_T jets
- $\Delta R_{\text{jet,jet}} > 1.4$ (insensitive to overlapping jet cones)
- study p_{Tmax} dependence for different p_{Tmin} of 50, 70, 90 GeV
- \rightarrow Measurement of $R_{3/2}(p_{Tmax}; p_{Tmin})$

$R_{3/2} = \sigma_{3-jet} / \sigma_{2-jet}$

SHERPA: good description (default version w/ MSTW2008LO PDFs)

PYTHIA: huge dependence on tune

- Reasonable description by tune BW
- Popular tunes A, DW → totally off

$\mathbf{R}_{3/2} = \sigma_{3\text{-jet}} / \sigma_{2\text{-jet}}$

Comparison to NLO pQCD

- Generated using FastNLO extrapolation of NLOJET++
- Good agreement. CT10 slightly high at high pT.
- Variation due to PDFs on the order of data uncertainties

Maybe: extract strong coupling \rightarrow up to p_T>400 GeV (yet untested)

Conclusions

- DØ continues to produce a wide-range of important QCD results, ranging from low p_T scattering, through an assortment of single and double differential jet measurements
- Presented
 - Extraction of aS from inclusive jet spectrum
 - Measurement of double differential dijet mass crosssections
 - Measurement of double differential trijet cross-sections
 - Rations of inclusive trijet to dijet cross-sections
- With data currently under analysis, expect more precision QCD measurements
 - Inclusive jets at high p_T
 - Triple differential jet cross sections
 - High precision central and forward direct photon measurements
- Tevatron will continue though Sept 2011
 - Are there additional measurements that can be made with 12 fb⁻¹?

For the latest public DØ QCD results, see http://www-d0.fnal.gov/Run2Physics/qcd/