

STUDIES OF MULTI-PARTON INTERACTIONS IN PHOTON+JETS EVENTS AT DØ

Dmitry Bandurin

Florida State University

DPF 2011, August 12, Brown University

Outline

- Motivations
- Event topology
- Discriminating variables
- Fraction of the events with Double Parton interactions
- Effective cross-section measurement
- Comparison/tuning to MPI models
- Summary

Motivations

- Most of the processes that cause MPI production are non-perturbative and implemented in some phenomenological models of a hadron structure and parton-to-hadron fragmentation.
- => Being phenomenological, the models strongly need experimental inputs.
- The provided experimental inputs have been based so far mainly on the minbias Tevatron (0.63, 1.8, 1.96 TeV), SPS (0.2, 0.54, 0.9 TeV) and Tevatron DY data.
- However, there is a quite small amount of tests of MPI events in high pT regime, specifically with events having jet pT > 15 GeV,
 - => i.e. right in the region used in many measurements (e.g. top-quark mass) and most important for searches of rare processes, especially with multi-jet final state.
 - => MPI events can mimic a signature of a new physics processes and thus be a significant background to them.

Double Parton events as a background to Higgs production

Signal

$$\sigma_{DP} = \frac{\sigma_A \sigma_B}{\sigma_{eff}}$$

Double Parton background

Estimates for Tevatron JHEP 1104:054(2011), LHC PRD61,077502(2000), PRD81,014014(2010)

- Many Higgs production channels can be mimicked by Double Parton events!
- Some of them can be significant even after signal selections.
- Dedicated cuts are required to increase sensitivity to the Higgs signal (same is true for many other rare processes)!

Double parton and effective cross sections

$$\sigma_{DP} = \frac{\sigma_A \sigma_B}{\sigma_{eff}}$$


```
\sigma_{\text{DP}} -double parton cross section for processes A and B \sigma_{\text{eff}} - factor characterizing a size of effective interaction region
```

 \rightarrow can be directly related to the spatial distribution of partons f(b).

Uniform: $\sigma_{\rm eff}$ is large and $\sigma_{\rm DP}$ is small Clumpy: $\sigma_{\rm eff}$ is small and $\sigma_{\rm DP}$ is large

=> Having σ eff measured we can estimate f(b)

→ Should be measured in experiment !!
Just 4 measurements existed up to recent time : AFS,UA2, 2 CDF [Run 1]

History of the measurements

Experiment	$\sqrt{s} \; (\mathrm{GeV})$	Final state	p_T^{min} (GeV)	η range	$\sigma_{ m eff}$
AFS (pp) , 1986	63	4 jets	$p_{\mathrm{T}}^{\mathrm{jet}} > 4$	$ \eta^{ m jet} < 1$	$\sim 5~\mathrm{mb}$
UA2 $(p\bar{p})$, 1991	630	4 jets	$p_{\mathrm{T}}^{\mathrm{jet}} > 15$	$ \eta^{ m jet} < 2$	> 8.3 mb (95% C.L.)
CDF $(p\bar{p})$, 1993	1800	4 jets	$p_{\mathrm{T}}^{\mathrm{jet}} > 25$	$ \eta^{ m jet} < 3.5$	$12.1^{+10.7}_{-5.4}$ mb
CDF $(p\bar{p}), 1997$	1800	$\gamma + 3 \text{ jets}$	$p_{\mathrm{T}}^{\mathrm{jet}} > 6$	$ \eta^{ m jet} < 3.5$	
			$p_{\mathrm{T}}^{\gamma} > 16$	$ \eta^{\gamma} < 0.9$	$14.5 \pm 1.7^{+1.7}_{-2.3} \text{ mb}$
$D\emptyset \ (p\bar{p}), 2010$	1960	$\gamma + 3 \text{ jets}$	± 1	$ \eta^{\gamma} < 1.0 $	
			$15 < p_T^{\text{jet2}} < 30$	$1.5 < \eta^{\gamma} < 2.5$	
				$ \eta^{jet} < 3.0$	$\sigma_{eff} = 16.4 \pm 0.3 \text{(stat)} \pm 2.3 \text{(syst) mb}$

D0, Phys.Rev.D81, 052012(2010)

AFS'86, UA2'91 and CDF'93

4-jet samples, motivated by a large dijet cross section (but low DP fractions)

CDF'97, D0'10

 γ +3jets events, data-driven method: use rates of Double Interaction (two separate ppbar collisions) and Double Parton (single ppbar collision) to extract σ_{eff} from their ratio. => reduces dependence on Monte-Carlo and NLO QCD theory predictions. to extract

Motivation for jet pT binning

Jet PT: jet from dijets vs. radiation jet from γ +jet events

▶ Jet pT from dijets falls much faster than that for a radiation jet, i.e. Fraction of dijet (Double Parton) events should drop with increasing jet pT => Measurement is done in three bins of 2nd jet pT: 15-20, 20-25, 25-30 GeV

Discriminating variables

▶ Main one is $\Delta \phi$ angle between two best pT-balancing pairs

$$\Delta S = \Delta \phi(p_T^{\gamma, \, \text{jet}}, p_T^{\text{jet}_i, \, \text{jet}_k})$$

For " $\gamma+3$ -jet" events from Single Parton scattering we expect ΔS to peak at π , while it should be flat for "ideal" Double Parton interaction (2nd and 3rd jets are both from dijet production) due to a pairwise pT balance.

Double Parton interaction model

Built from D0 data. Samples:

A: photon $+ \ge 1$ jet from γ +jets data events:

- 1 VTX events
- photon pT: 60-80 GeV
- leading jet pT>25 GeV, $|\eta|$ <3.0.

or +

MixDP

B: ≥1 jets from MinBias events:

- 1 VTX events
- jets with pT's recalculated to the primary vertex of sample A have pT>15 GeV and $|\eta|$ <3.0.

- ► A & B samples have been (randomly) mixed with jets pT re-ordering
- ► Events should satisfy photon+≥3 jets requirement.
- $ightharpoonup \triangle R(photon, jet1, jet2, jet3)>0.7$

⇒ Two scatterings are independent by construction!

The two datasets method

Data and DP model

for the DP fractions

Dataset 1: 2nd jet pT: 15-20 GeV Dataset 2: 2nd jet pT: 20-25 GeV

- ✓ Fraction of Double Parton in bin 15-20 GeV (f₁) is the only unknown
- → get from minimization.

Good agreement of the ΔS Single Parton distribution extracted in data and in MC (see previous slide)

→ another confirmation for the found DP fractions.

Fractions of Double Parton γ +3-jet events

Found DP fractions are pretty sizable: they drop from \sim 46-48% at 2nd jet pT 15-20 GeV to \sim 22-23% at 2nd jet 25-30 GeV with relative uncertainties \sim 7-12%.

CDF Run I: 53±3% at 5-7 GeV of uncorr. jet pT.

Calculation of $\sigma_{\rm eff}$

Phys.Rev.D81,052012(2010), arXiv:0912.5104

- σ_{eff} values in different jet pT bins agree with each other within their uncertainties (also compatible with a slow decrease with pT).
- Uncertainties have very small correlations between 2nd jet pT bins.
- One can calculate the averaged (weighted by uncertainties) values over the pT bins:

$$\sigma_{eff}^{ave} = 16.4 \pm 0.3(stat) \pm 2.3(syst)mb$$

CDF Run I: $14.5 \pm 1.7^{+1.7}_{-2.3}$ mb

Main systematic and statistical uncertainties (in %) for σ eff.

$p_T^{ m jet2}$	Sy	ystema	atic uncer	tainty s	sources	$\delta_{ m syst}$	$\delta_{ m stat}$	$\delta_{ m total}$
(GeV)	$f_{ m DP}$	$f_{ m DI}$	$arepsilon_{ m DP}/arepsilon_{ m DI}$	JES	$R_c \sigma_{ m hard}$	(%)	(%)	(%)
15 - 20	7.9	17.1	5.6	5.5	2.0	20.5	3.1	20.7
20 - 25	6.0	20.9	6.2	2.0	2.0	22.8	2.5	22.9
25 - 30	10.9	29.4	6.5	3.0	2.0	32.2	2.7	32.3

Models of parton spatial density and $\sigma_{ ext{eff}}$

- $\sigma_{
 m eff}$ is directly related with parameters of models of parton spatial density
- Three models have been considered: Solid sphere, Gaussian and Exponential.

TABLE VI: Parameters of parton spatial density models calculated from measured σ_{eff} .

Model for density	1 \ /	$\sigma_{ ext{eff}}$	$R_{\rm rms}$	Parameter (fm)	$R_{\rm rms}$ (fm)
Solid Sphere	Constant, $r < r_p$	$4\pi r_p^2/2.2$	$\sqrt{3/5}r_p$	0.53 ± 0.06	0.41 ± 0.05
Gaussian	$e^{-r^2/2a^2}$	$8\pi a^2$	$\sqrt{3}a$	0.26 ± 0.03	0.44 ± 0.05
Exponential	$e^{-r/b}$	$28\pi b^2$	$\sqrt{12}b$	0.14 ± 0.02	0.47 ± 0.06

- The rms-radii above are calculated w/o account of possible parton spatial correlations. For example, for the Gaussian model one can write [Trelelani, Galucci, 0901.3089,hep-ph]:

$$\frac{1}{\sigma_{eff}} = \frac{3}{8\pi R_{rms}^2} (1 + Corr.)$$

- If we have rms-radii from some other source, one can estimate the size of the spatial correlations (larger corr. \leftrightarrow larger rms-radius with a fixed $\sigma_{\rm eff}$)

Angular decorrelations in $\gamma+2$ and $\gamma+3$ jet events

Motivations:

- \triangleright By measuring **differential** cross sections vs. the azimuthal angles in γ +3(2) jet events we can better tune (or even exclude some) MPI models in events with high pT jets.
- > Differentiation in jet pT increases sensitivity to the models even further.

Four normalized differential cross sections are measured

- $\Delta \phi(y+\text{jet1}, \text{jet2})$ in 3 bins of 2nd jet pT: 15-20, 20-25 and 25-30 GeV
- $\Delta S(y+jet1, jet2+jet3)$ for 2nd jet pT 15-30 GeV (larger for stat. reasons but still has good sensitivity to MPI models)

$\triangle S$ and $\Delta \phi$ cross sections

- MPI models substantially differ from any SP (=single parton scattering) prediction.
- Large difference between SP models and data confirms presence of DP events in data.
- MPI models differ noticeably, especially at small angles
 - => we can tune the models or just choose the best one(s)
- Data are close to Perugia (P0), S0 and Sherpa MPI tunes.
 N.B.: the conclusion is valid for both the considered variables and 3 jet pT intervals!

$\Delta \phi$ cross sections

TABLE V: The results of a χ^2 test of the agreement between data points and theory predictions for the ΔS ($\gamma + 3$ jet) and $\Delta \phi$ ($\gamma + 2$ jet) distributions for $0.0 \le \Delta S(\Delta \phi) \le \pi$ rad. Values are χ^2/ndf .

Variable	p_T^{jet2}	SP m	odel					MI	PI mod	lel			
	(GeV)	PYTHIA	${\rm SHERPA}$	A	$_{\mathrm{DW}}$	S0	P0	P-nocr	P-soft	P-hard	P-6	P-X	SHERPA
ΔS	15 - 30	7.7	6.0	15.6	21.4	2.2	0.4	0.5	2.9	0.5	0.4	0.5	1.9
$\Delta \phi$	15 - 20	16.6	11.7	19.6	27.7	1.6	0.5	0.9	1.6	0.9	0.6	0.8	1.2
$\Delta \phi$	20 - 25	10.2	5.9	4.0	7.9	1.1	0.9	1.4	2.1	1.1	1.3	1.5	0.4
$\Delta \phi$	25 - 30	7.2	3.5	2.8	3.0	2.4	1.1	1.1	3.7	0.2	1.3	1.9	0.7

DP fractions in γ +2 jet events

- In $\gamma+2$ jet events in which 2^{nd} jet is produced in the 2nd parton interaction, $\Delta\phi(\gamma+\text{jet1},\text{jet2})$ distribution should be flat.
- Using this fact and also SP prediction for $\Delta \phi(\gamma + \text{jet1}, \text{jet2})$ one can get DP fraction from a maximal likelihood fit to data.

Example of the fit for 2nd jet pT bin 15 – 20 GeV

DP fractions for in $\gamma+2$ jet events

$p_T^{ m jet 2}$	$\langle p_T^{ m jet2} angle$	$f_{ m dp}^{\gamma 2j}$	Unce	rtaint	ies (in %)
(GeV)	(GeV)	(%)	Fit	δ_{tot}	SP model
15 - 20	17.6	11.6 ± 1.0	5.2	8.3	6.7
20 - 25	22.3	5.0 ± 1.2	4.0	20.3	11.0
25 - 30	27.3	2.2 ± 0.8	27.8	21.0	17.9

CDF Run I: 14^{+8}_{-7} % at jet pT > 8 GeV and photon pT > 16 GeV

DP fractions in $\gamma+2$ jet events vs. $\Delta\phi$

- DP fractions should depend on $\Delta\phi(\gamma+\text{jet1},\text{jet2})$: the smaller $\Delta\phi$ angle the larger DP fraction (see, for example, the plot on previous slide).
- ullet We can find this dependence by repeating the same fits at smaller $\Delta\phi$ angles.

DP fractions vs $\Delta \phi$ bin for 3 bins of 2^{nd} jet pT

=> DP fractions are larger at smaller angles and smaller 2nd jet pT

TP fractions

 $\gamma+3$ jet final state also can be produced by Tripple Parton interaction (TP). In $\gamma+3$ jet events all 3 jets should stem from 3 different parton scatterings. To estimate the TP fraction the we used results on DP+TP fractions and fractions of Typel(II) events found in our previous measurement.

TP in γ +3jet data is calculated as:

$$f_{tp}^{\gamma 3j} = f_{dp+tp}^{tp} \cdot f_{dp+tp}^{\gamma 3j}$$

The fraction of TP in MixDP can be found as:

$$f_{tp}^{dp+tp} = F_{typeII} \cdot f_{dp}^{\gamma 2j} + F_{typeI} \cdot f_{dp}^{jj}$$

 $f_{dp+tp}^{\gamma 3 j}$ - measured in previous DP analysis; $f_{dp}^{\ j j}$ - estimated using dijet cross section;

$$f_{dp}^{\,
m \gamma 2j}$$
 - measured;

 $F_{typeI(II)}$ - found from the model (MixDP).

Probability to produce another parton scattering is proportional to $R = \sigma_{ij}/\sigma_{eff}$, the $f_{tp}^{\gamma 3j}/f_{dp}^{\gamma 3j}$ ratio should be proportional to R.

$p_T^{\text{jet2}} \text{ (GeV)}$ (GeV)	$f_{ m tp}^{\gamma 3j} \ (\%)$	$f_{\rm tp}^{\gamma 3j}/f_{\rm dp}^{\gamma 3j}$ (%)
15 - 20	5.5 ± 1.1	13.5 ± 3.0
20 - 25	2.1 ± 0.6	6.6 ± 2.0
25 - 30	0.9 ± 0.3	3.8 ± 1.4

Summary

- > In D0 we have been studying DP production events and measured recently:
- Fraction of DP events in $\gamma+3$ -jet events in three pT bins of 2^{nd} jet : 15-20, 20-25, 25-30 GeV. It varies from $\sim47\%$ at 15-20 GeV to $\sim23\%$ at 25-30 GeV
- Effective cross section (process-independent, defines rate of DP events) $\sigma_{\rm eff}$ in the same jet pT bins with average value:

$$\sigma_{eff}^{ave} = 16.4 \pm 0.3 (stat) \pm 2.3 (syst) mb$$

- The DP in γ+2jets: 11.6% at 15-20 GeV to 2.2% at 25-30 GeV.
- The TP fractions in y+3-jet events are determined for the firs time. As a function of 2nd jet pT, they drop from \sim 5.5% at 15-20 GeV, to \sim 0.9% at 25-30 GeV.
- The \triangle S and $\Delta\phi$ cross sections. They allow to better tune MPI models: Data prefer the Sherpa and Pythia MPI models (P0, P0-X, P0-hard) with pT-ordered showers.
- DP production can be a significant background to many rare processes, especially with multi-jet final state. A set of variables allowing to reduce the DP background is suggested.

BACK-UP SLIDES

Some still open questions and Prospects

- Is σ_{eff} really stable from small to very big scales μ of a hard interaction?
- How the spatial distribution should depend on the parton species (eg. valence vs. sea quarks / gluons)?
 What observables could be used to improve understanding of transverse structure?
- Is the assumption G(x,b) = D(x) F(b) true? How to make unambiguous test of this factorization? Interesting recent related analysis: 4-jet production in the light of two-parton GPD(x1,x2,b), where b is a transverse distance: arXiv:1009.2741 [hep-ph].
- => More measurements of DP fractions and $\sigma_{\rm eff}$ are needed in different processes having different initial state, but at similar energy scales as in the studied $\gamma+3$ -jet events. For example, di-b-jet+dijet, W/Z/photon + ≥ 2 heavy flavour jets, diphoton+dijet, mutlijet Drell-Yan events.

- > Studies of MPI events did not receive a proper attention up to recent time, but currently more people/groups are becoming involved in this business.
- > Studies of MPI events are important since lead to a knowledge of the fundamental hadron structure.
- Rates of DP/MPI events are significant at the Tevatron, but should be much larger at the LHC (about a factor 2) mainly because PDF increase rapidly with $x \rightarrow 0$ and DP cross section grows as a product of 2x2 PDFs. Plus σ_{eff} seems should drop due to dPDF evolution.
 - Thus, they can be important background to many 'new physics' processes at LHC.

Parton spatial density and $\sigma_{\rm eff}$

Double parton cross section

$$\sigma_{\rm dp} = \sum_{q/g} \int \frac{\sigma_{12}\sigma_{34}}{2\sigma_{\rm eff}} D_p(x_1, x_3) D_{\bar{p}}(x_2, x_4) dx_1 dx_2 dx_3 dx_4$$

Double parton scattering

Effective cross section $\sigma_{\rm eff}$ is directly related with parton spatial density:

$$\sigma_{eff}^{-1} = \int d^2\beta \big[F(\beta)\big]^2, \quad \beta \text{ is impact parameter}$$

$$F(\beta) = \int f(b)f(b-\beta)d^2b,$$

where f(b) is the density of partons in transverse space.

=> Having σ eff measured we can estimate f(b)

Measurement of $\sigma_{\rm eff}$

At two hard scattering events:

$$P_{DI} = 2 \left(\frac{\sigma^{\gamma j}}{\sigma_{hard}} \right) \left(\frac{\sigma^{j j}}{\sigma_{hard}} \right)$$

The number of Double Interaction events:

$$N_{DI} = 2 \frac{\sigma^{\gamma j}}{\sigma_{hard}} \frac{\sigma^{j j}}{\sigma_{hard}} N_{C}(2) A_{DI} \epsilon_{DI} \epsilon_{2xtx}$$

At one hard interaction:

$$P_{DP} = \left(\frac{\sigma^{\gamma j}}{\sigma_{hard}}\right) \left(\frac{\sigma^{j j}}{\sigma_{eff}}\right)$$

Then the number of Double Parton events:

$$N_{DP} = \frac{\sigma^{\gamma j}}{\sigma_{hard}} \frac{\sigma^{j j}}{\sigma_{eff}} N_{C}(1) A_{DP} \epsilon_{DP} \epsilon_{1vtx}$$

Therefore one can extract:

$$\sigma_{\text{eff}} = \frac{N_{DI}}{N_{DP}} \frac{N_{C}(1)}{2N_{C}(2)} \frac{A_{DP}}{A_{DI}} \frac{\epsilon_{DP}}{\epsilon_{DI}} \frac{\epsilon_{1\text{Mtx}}}{\epsilon_{2\text{Mtx}}} \sigma_{\text{hard}}$$

Double parton interactions and dPDF evolution

From Phys.Rev.D81,065014(2010)(arXiv:1001.0104) as an interpretation of the D0 measurement

• If at any given scale μ_0 : $D(x1,x2,\mu_0) = D(x1,\mu_0)*D(x2,\mu_0) \theta(1-x1-x2)$ the dPDF evolution violates this factorization inevitably at any different scale $\mu \neq \mu_0$: $D(x1,x2,\mu) = D(x1,\mu)*D(x2,\mu) + R(x1,x2,\mu)$, where $R(x1,x2,\mu)$ is a correlation term.

FIG. 1: Effective cross section $\sigma_{\text{eff}}^{\text{exp}}$ measured in the three p_T^{jet2} bins at the D0 experiment [5]. The solid (k=0.5) and dashed (k=0.1) lines are the results from Eq. [11] at $p_{T0}^{\text{jet2}}=22.5$ GeV and $\sigma_{\text{eff}}^{0}=16.3$ mb.

Direct account of double PDFs: J.Gaunt and J.Stirling, JHEP 1003:005,2010.
 First software implemented evolution equations and solutions for dPDF
 To the large extent, being encouraged by the D0 measurement.

Motivations

Comparison of the top-quark mass offset corrections with a few MPI models

Difference between the two sets of the models leads to about 0.5-1.0 GeV uncertainty to the offset corrections for the top-quark mass.