

Measurement of γ +b/c+X production cross sections at CDF

Tingjun Yang/FNAL

DPF 2011, Brown University

Outline

- Introduction: $\gamma + b/c + X$ production
- Tevatron and CDF
- Analysis details
 - Photon fraction
 - Heavy-flavor jet fraction
 - Unfolding factors
- Preliminary results

γ +*b*/*c*+X production

- Photon produced in association with heavy quarks provides valuable information about PDFs of the initial state hadrons.
- LO contribution: Compton scattering (Qg->Qγ)– dominates at low photon p_T.
- NLO contribution: annihilation $(q\bar{q}->Q\bar{Q}\gamma)$ dominates at high photon p_T .
- Provide constraints on b, c, g PDFs.

The Tevatron and CDF

Tevatron:

- Proton-antiproton accelerator
- $\sqrt{s} = 1.96 \text{ TeV}$
- Delivered 11.6 fb⁻¹
- Recorded 9.7 fb⁻¹

<u>CDF</u>

- Collider Detector at Fermilab
- Tracking (large B field):
 - Silicon tracking
 - Wire Chamber
- Calorimetry:
 - Electromagnetic (EM)
 - Hadronic
- Muon system

Previous results

D0: PRL 102, 192002 (2009) - 1 fb⁻¹

Analysis overview

- Measure γ+b/c+X cross section using 6.6 fb⁻¹ inclusive photon data collected with CDF II detector
- Use ANN (artificial neural network) to select photon candidates
 - Fit ANN distribution to signal/background templates to get photon fraction
- Use SecVtx b-tag to select heavy-flavor jets
 - Fit secondary vertex invariant mass to get light/c/b quark fractions
- Use MC to get unfolding factor
 - Photon ID efficiency, b-tagging efficiency, detector acceptance and smearing effects
- Cross section
 - $(N_{data}-fake photon)*f_{b/c}/unfolding factor/lumi/binwidth$

Event selection

- Use inclusive photon trigger to select photon events
 - > Trigger efficiency is approximately 100% for $\gamma E_T > 30 \text{ GeV}$
- Interaction vertex in the fiducial region
- Photon candidate must pass a neural-net based photon ID
 - $|\eta| < 1.05, 30 < E_T < 120$ GeV, divided into 6 E_T bins
 - Working to expand to 300 GeV
- Jet is reconstructed with JetClu cone size 0.4 and must be positively tagged.
 - ▶ |η|<1.5, E_T>20 GeV
- ▶ ∆R(γ,jet)>0.4

ANN photon ID

- Trained with TMVA (Toolkit for Multivariate Data Analysis with ROOT)
- 7 input variables to take into account difference between γ and π^0/η : isolation (2), lateral shower shape (3), Had/Em, CES/CEM
- Use Pythia MC with full detector simulation to get templates
 - Signal: prompt photons
 - Background: jets with prompt photons removed

True photon fraction

Fit data ANN distribution to signal and background templates using TMinuit to get true photon fraction

DPF 2011, Brown University 8/11/11

True photon fraction (continued)

Systematics

- Photon energy scale
- Vary inputs to photon ID ANN according to their uncertainties
- Vary Photon ID ANN template binning to test sensitivity to shapes
- ▶ 8% at low E_T, 2% at high E_T.

Standard b-jet identification

- B-hadrons are long-lived search for displaced vertices
- Fit displaced tracks and cut on L_{xy} significance ($\sigma \sim 200 \ \mu m$)
- Charm hadrons have similar tag behavior but lower efficiency
- Can use "tag mass" to deduce the flavor composition of a sample of tagged jets
 - Mass of the tracks forming the secondary vertex
 - B-hadrons are heavy: will have higher m_{tag} spectrum than charm or light jet fakes

DPF 2011, Brown University 8/11/11

- Fit data secondary vertex mass to MC templates
- Shape of secondary vertex mass (light, c and b, including their ratios) for event with fake photon is taken from di-jet data, normalized to the fake photon rate obtained from ANN fit

Light/c/b-jet fractions (continued)

- Error bars are statistical errors returned from fitter
- c-jet fraction is lower than b-jet fraction at high E_T because b-tagging efficiency is lower for charm mesons.

| |3

Systematics on b/c-jet fractions

- Jet energy scale: affect acceptance
- Uncertainty in tracking efficiency: scale secondary vertex mass templates by ±3%
 - Dominant systematic effect
- Difference between single-quark and di-quark jets
- Total systematic error is ~20%

Unfolding factors

- Use Pythia MC to unfold photon ID efficiency, b-tagging efficiency, detector acceptance and smearing effects.
- Systematic effects evaluated: photon energy scale, photon ID, jet energy scale, b-tagging efficiency and PDF

Preliminary cross section results

- Preliminary results
- Working to expand to 300 GeV
- Working on comparison with theory

Systematics

- The dominant systematic effect is the uncertainty in secondary vertex mass template shape
- 20% systematic error in total

Conclusions

- We have shown the details of the measurement of γ+b/c
 +X production cross sections
 - Photon fraction
 - b/c fractions
 - Unfolding efficiencies and detector effects
- We have made good progress in this measurement and will release the final results soon – stay tuned!

Thank you for your attention!

Fit ANN

| | 9

Fit secondary vertex mass

