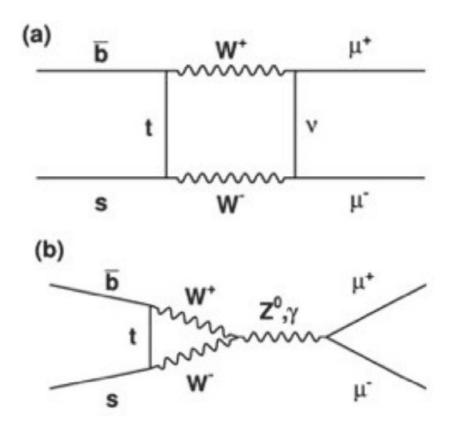


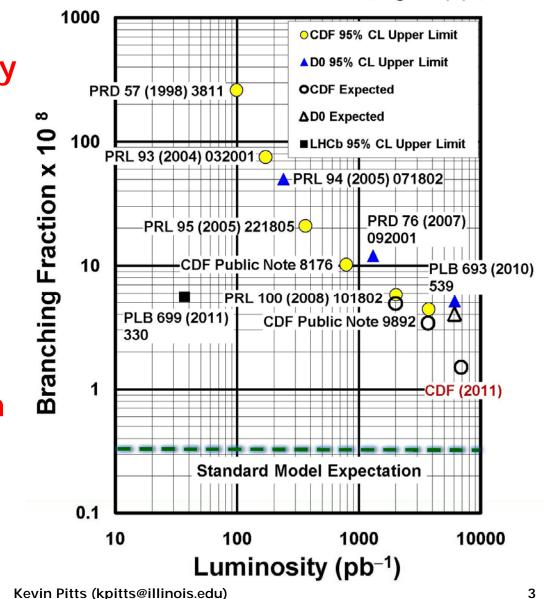
Search for $B \rightarrow \mu^{+} \mu^{-}$ at CDF


Kevin Pitts University of Illinois

DPF 2011, Providence

Motivation

- SM rate well understood
- SM rate is small, 3.2x10⁻⁹
- Broad class of NP models (scalar operators) enhance it by O(1-100)
- · Clean signature
- Current experimental limits closing in on SM sensitivity



History through spring 2011

 Limit has improved by more than x10 since 2004

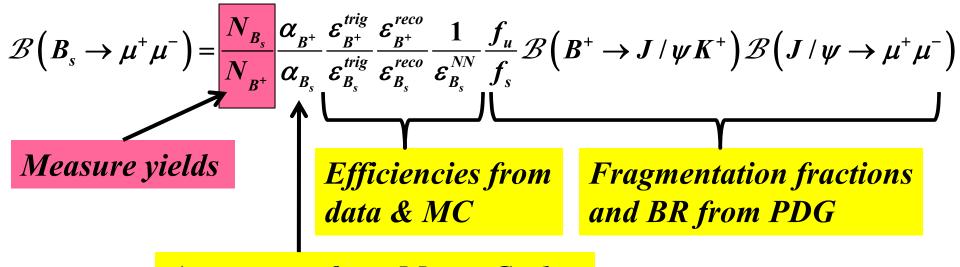
 2011 projected sensitivity about a factor of 5 away from standard model

95% CL Limits on $\mathcal{B}(B_s \rightarrow \mu\mu)$

• Number of reconstructed *B_s* decays:

$$N_{B_s} = 2 \mathscr{L} \sigma_{b\bar{b}} f_s \mathscr{B} (B_s \to \mu^+ \mu^-) \alpha_{B_s} \varepsilon_{B_s}$$

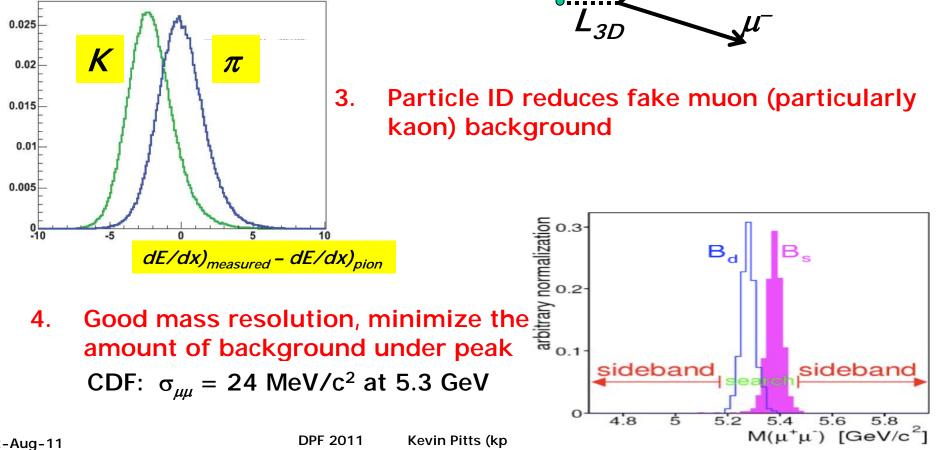
Number of reconstructed
 B⁺ decays:

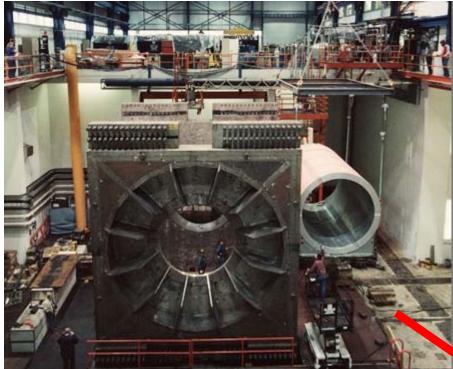

$$N_{B^{+}} = 2 \mathcal{L} \sigma_{b\bar{b}} f_{u} \mathcal{B} \left(B^{+} \to J / \psi K^{+} \right) \mathcal{B} \left(J / \psi \to \mu^{+} \mu^{-} \right) \alpha_{B^{+}} \varepsilon_{B^{+}}$$

 $\cdot \sigma_{bb}$ and \mathcal{L} cancel in ratio:

$$\mathcal{B}\left(B_{s} \to \mu^{+}\mu^{-}\right) = \frac{N_{B_{s}}}{N_{B^{+}}} \frac{\alpha_{B^{+}} \varepsilon_{B^{+}}}{\alpha_{B_{s}} \varepsilon_{B_{s}}} \frac{f_{u}}{f_{s}} \mathcal{B}\left(B^{+} \to J/\psi K^{+}\right) \mathcal{B}\left(J/\psi \to \mu^{+}\mu^{-}\right)$$
$$= \frac{N_{B_{s}}}{N_{B^{+}}} \frac{\alpha_{B^{+}}}{\alpha_{B_{s}}} \frac{\varepsilon_{B^{+}}^{trig}}{\varepsilon_{B_{s}}^{trig}} \frac{\varepsilon_{B^{+}}^{reco}}{\varepsilon_{B_{s}}^{reco}} \frac{1}{\varepsilon_{B_{s}}^{NN}} \frac{f_{u}}{f_{s}} \mathcal{B}\left(B^{+} \to J/\psi K^{+}\right) \mathcal{B}\left(J/\psi \to \mu^{+}\mu^{-}\right)$$

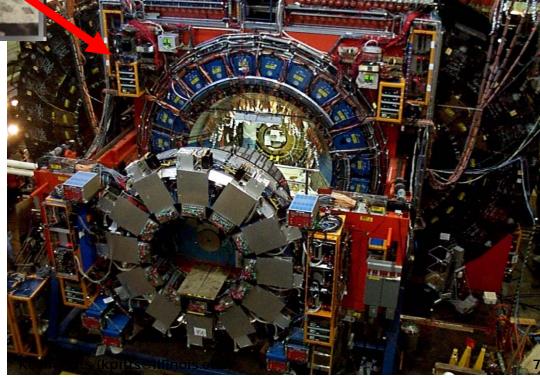
In a nutshell

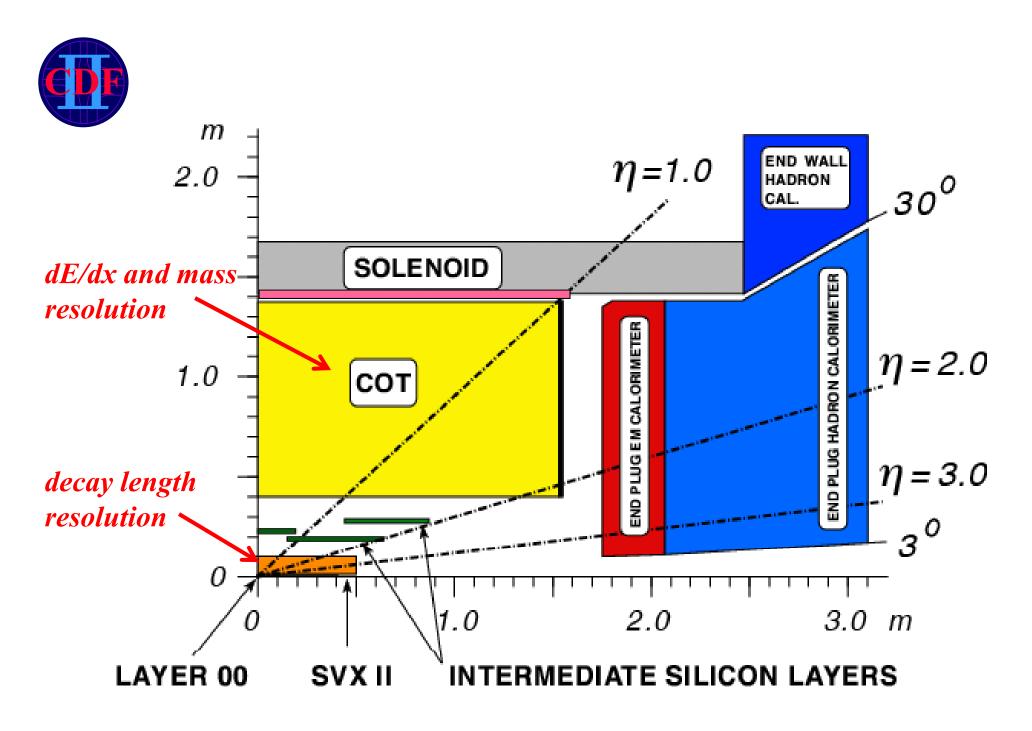

Acceptance from Monte Carlo


Additional aspects:

- Use neural net, optimize selection
- Extraction of *N* additionally requires evaluation of background contributions.
- Analysis is statistics limited
- Many systematics cancel in ratio, dominant syst. is $f_u/f_s!$

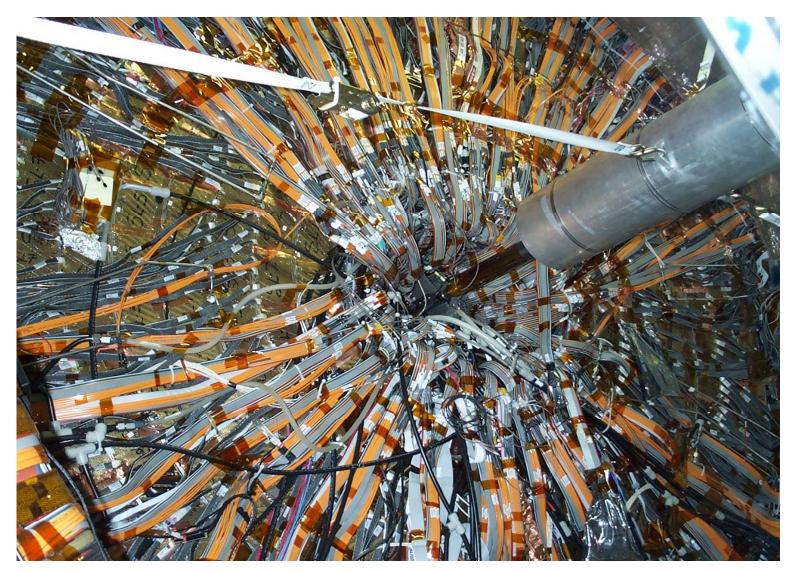
- Want high yield, need trigger/DAQ to handle high event rates 1.
- 2. Use long *B* lifetime to reject enormous prompt background, need good impact parameter resolution.

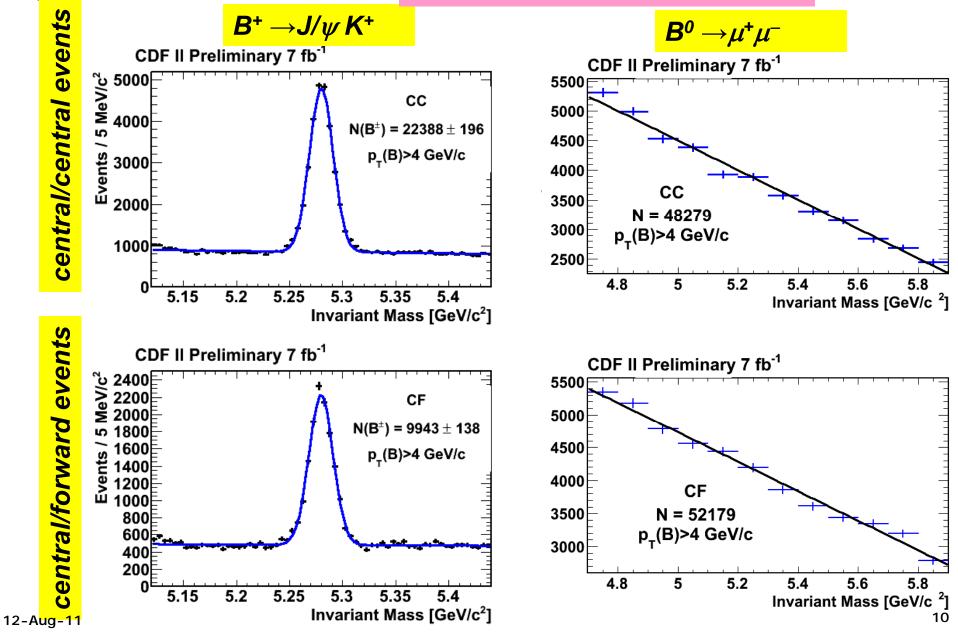



~30 years ago

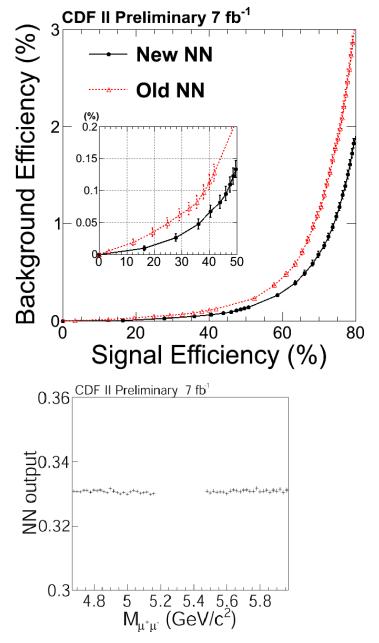
The CDF Detector

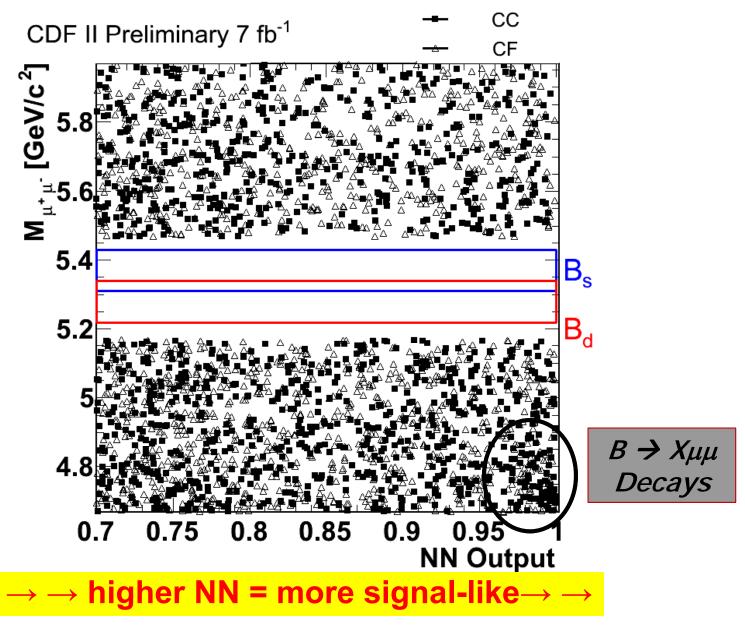
- · Central tracking
- Silicon vertex detector
- Good lepton identification
- Particle ID (TOF and dE/dx)
- High rate trigger/DAQ system

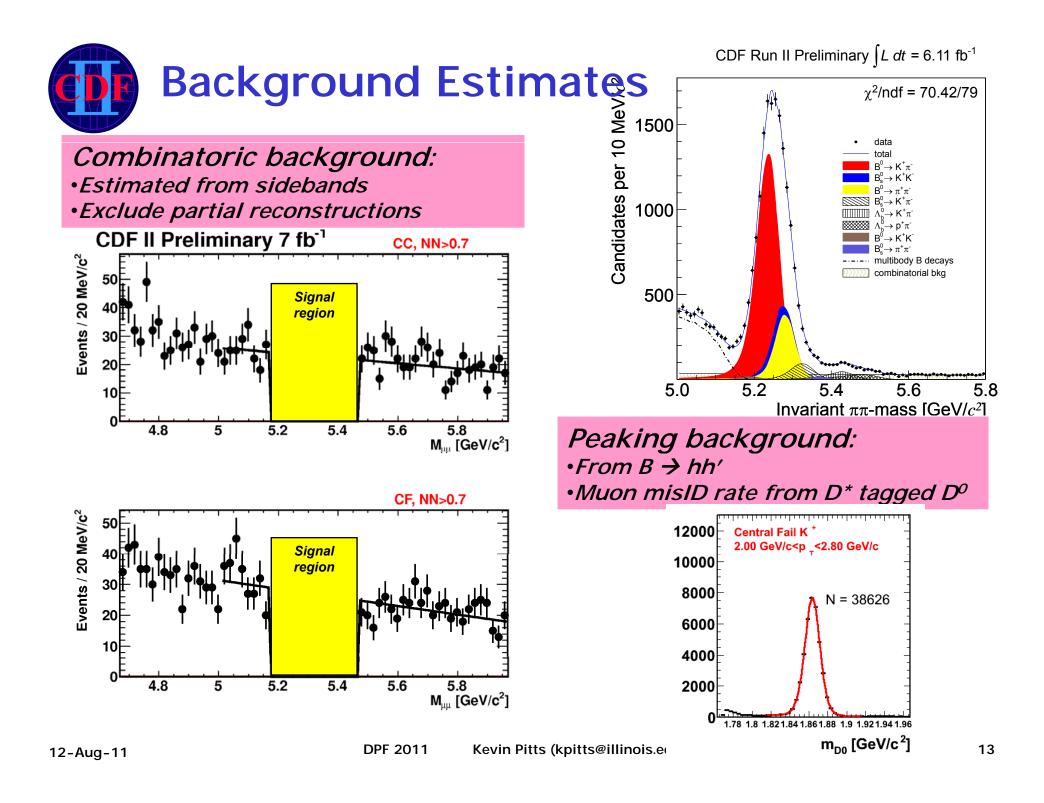



What it looks like in the end

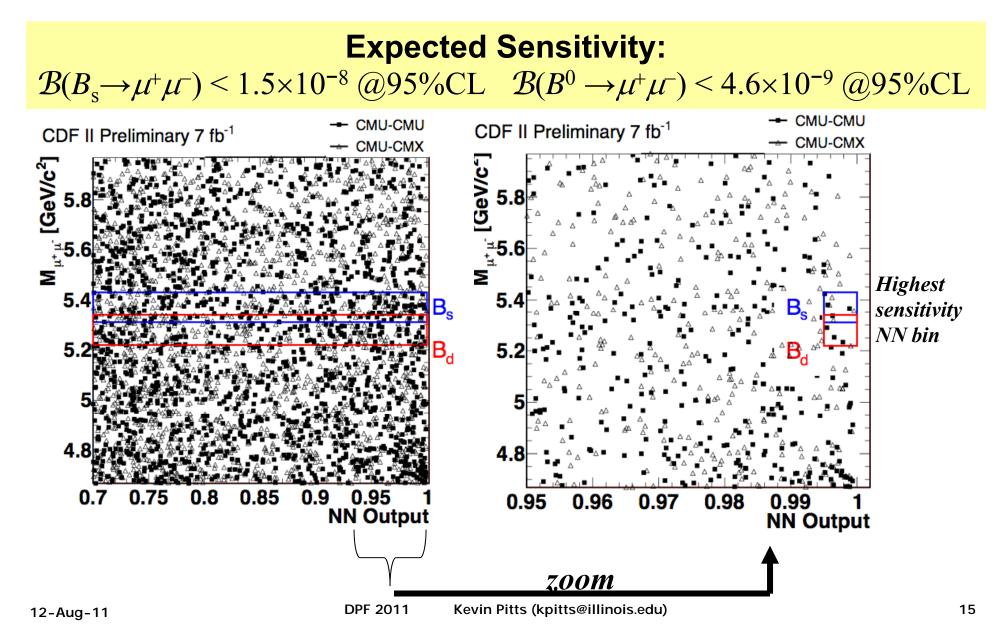
Baseline selection


Before neural net selection.


Neural Net Selection

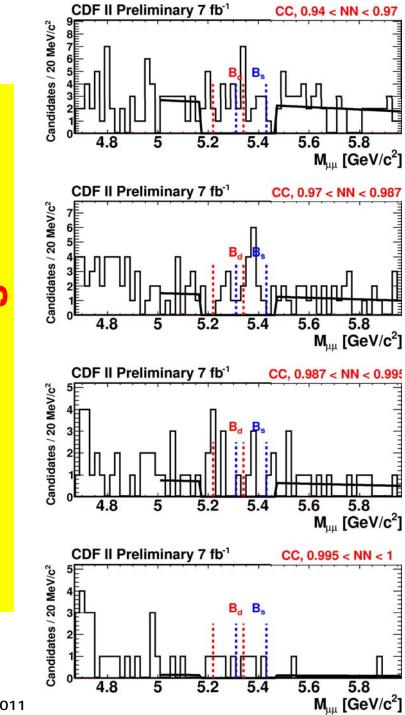

- Improved with respect to previous analysis
- Blind optimization for $B_s \rightarrow \mu\mu$ expected limit
- · Carefully check for bias
 - mass dependence
 - overtraining
 - · check with sideband data

NN vs. Mass, Still Blinded


Checks on Control Regions

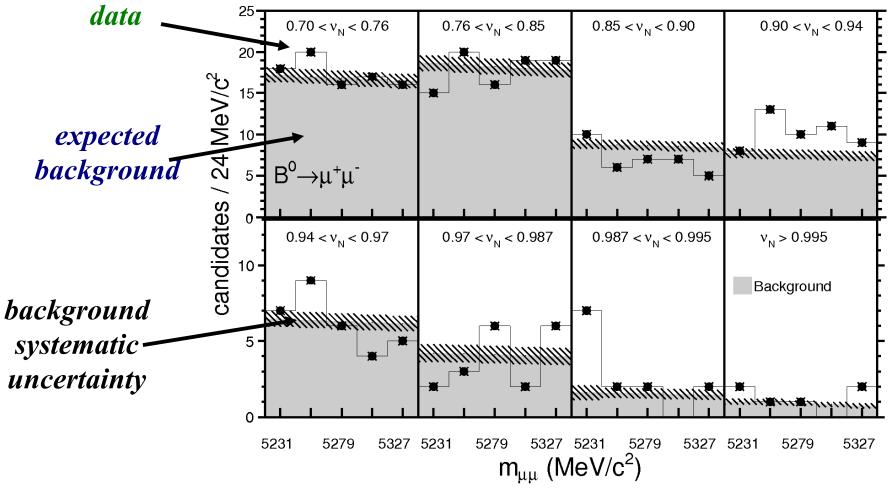
Γ	Control Sample	Prediction	Nobs	Prob(N>=Nobs)
Negative lifeti	me_OS-	2140.0±53.9	1999	98%
Gran e eier and	SS+	19.7±3.4	25	19%
<mark>-Same-sign-muons</mark>	SS-	46.8±5.3	53	25%
Fake muon enho	anced FM+	567.8±25.4	593	24%
	Sum	2774.3±59.9	2670	91%

Table: A comparison of the predicted and observed number of events in an extended signal mass region for all NN cuts for all the control samples. This is used as a cross check of the background estimates.



$B \rightarrow \mu^+ \mu^-$ search: opening the box

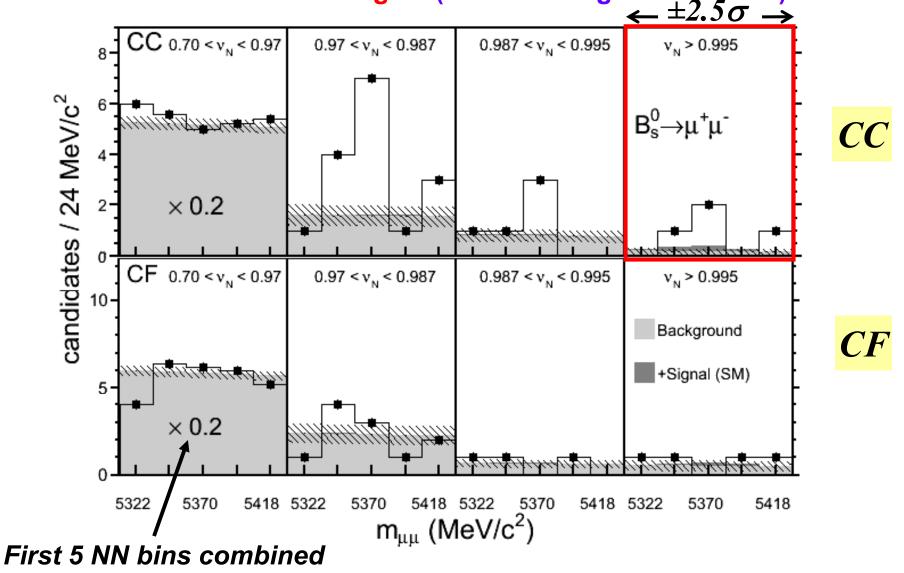
ZZ Increasing



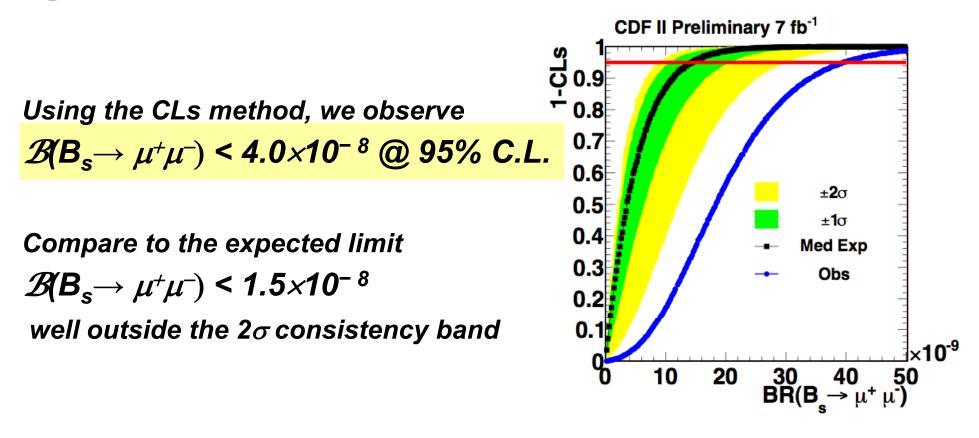
Showing CC only, highest purity NN bins

B⁰ Search Window

 $\leftarrow \pm 2.5\sigma \rightarrow$


observed $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 6.0 \times 10^{-9} 95\% CL$

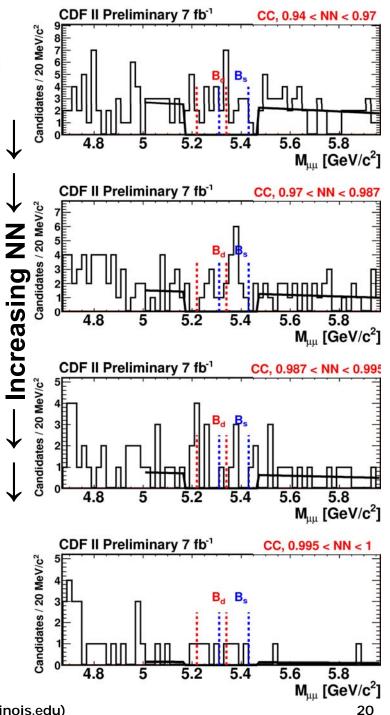
DPF 2011


$B_s \rightarrow \mu^+ \mu^-$ Signal Window

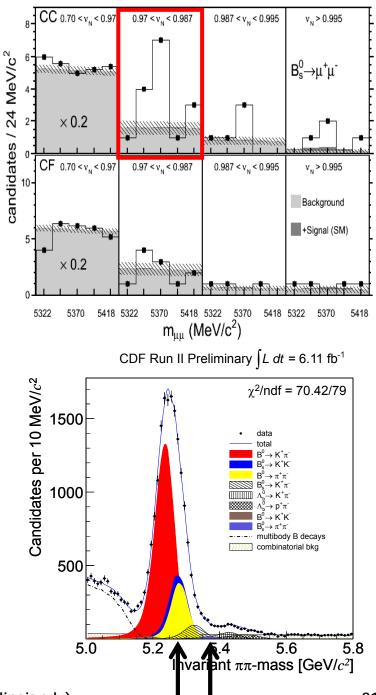
Include assumed SM signal (almost all signal NN>0.995)

$B_s \rightarrow \mu^+ \mu^-$: Observed Limit

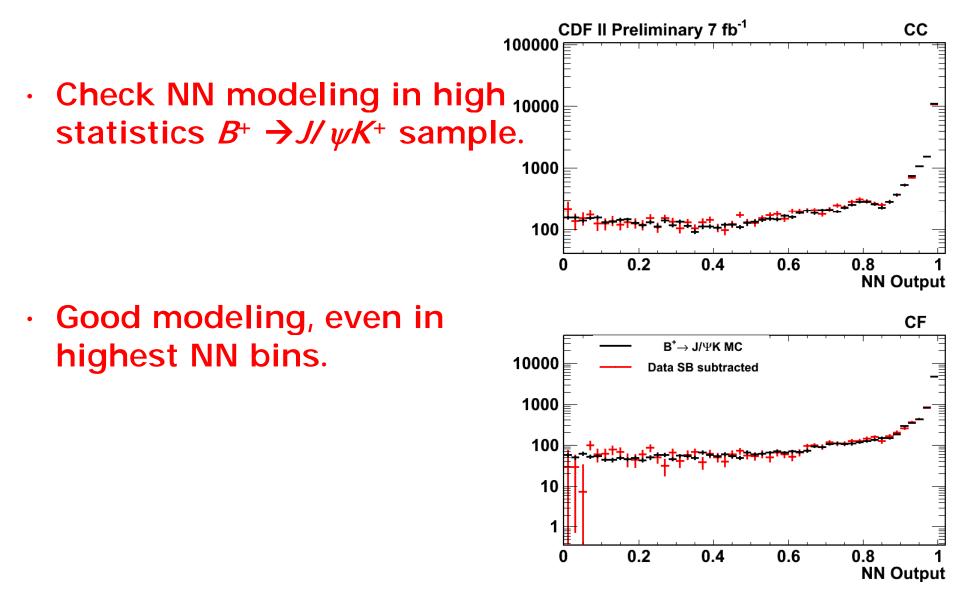
Need statistical interpretation of the observed excess:


- what is the level of inconsistency with the background?
- what does a fit to the data in the B_s search window yield?

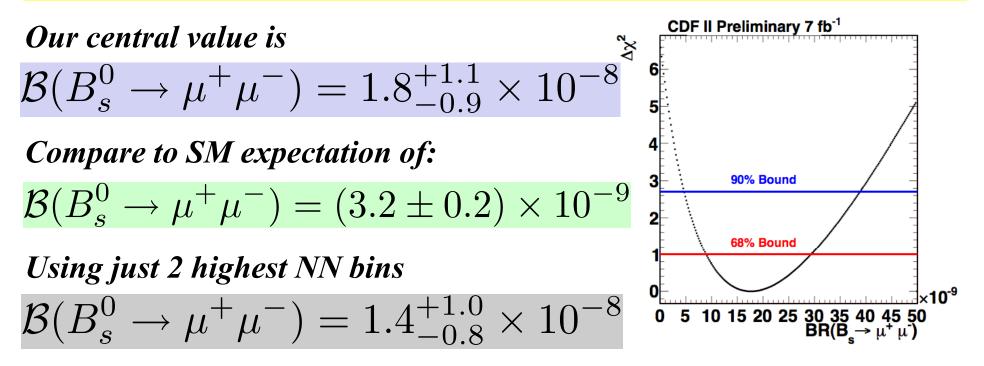
- Use simulated experiments to evaluate consistency
 - include systematics.


p-value=0.27% for background only hypothesis

p-value=1.9% for SM signal plus background hypothesis

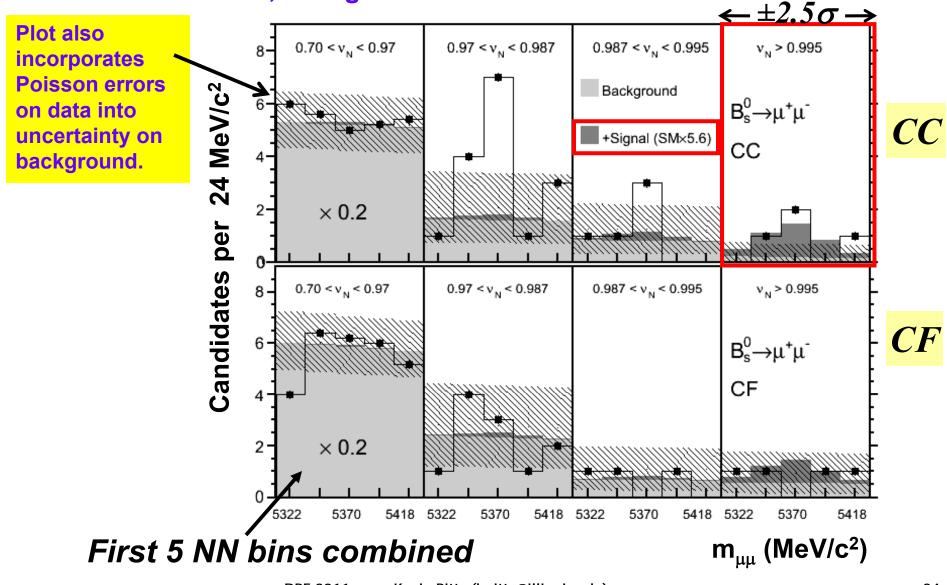


- Reminder: B^o analysis uses same sidebands, fits, mis-ID probabilities.
- Used "blinded" choices to avoid bias
- We also considered:
 - peaking bkgd. ($B \rightarrow hh'$)?
 - Predict 0.014 $B \rightarrow hh'$ in 3rd bin.
 - Should be x10 more in B^0
 - \cdot would peak at low edge in B_s search
 - NN biasing background?
 - Check NN using $B^+ \rightarrow J/\psi K^+$
 - additional combin. bkgd.?
 - · Comb. background doesn't peak
 - Prediction agrees with data in *B*^o region and in lower NN bins.
 - statistical fluctuation?
 - Possible for 1 out of 80 bins
- · Conclude: likely a fluctuation.
- Little signal expected in this bin. Results not different using just 2 highest bins


Check NN modeling

Fit to the data in the B_s search window

Using the log-likelihood fit described before, we set the first two-sided limit for the $B_s \rightarrow \mu^+ \mu^-$ branching fraction:


4.6 x 10⁻⁹ < $\mathcal{B}(B_s \to \mu^+ \mu^-)$ < 3.9 x 10⁻⁸ @ 90% CL

$B_{s} \rightarrow \mu^{+} \mu^{-}$ Signal Window

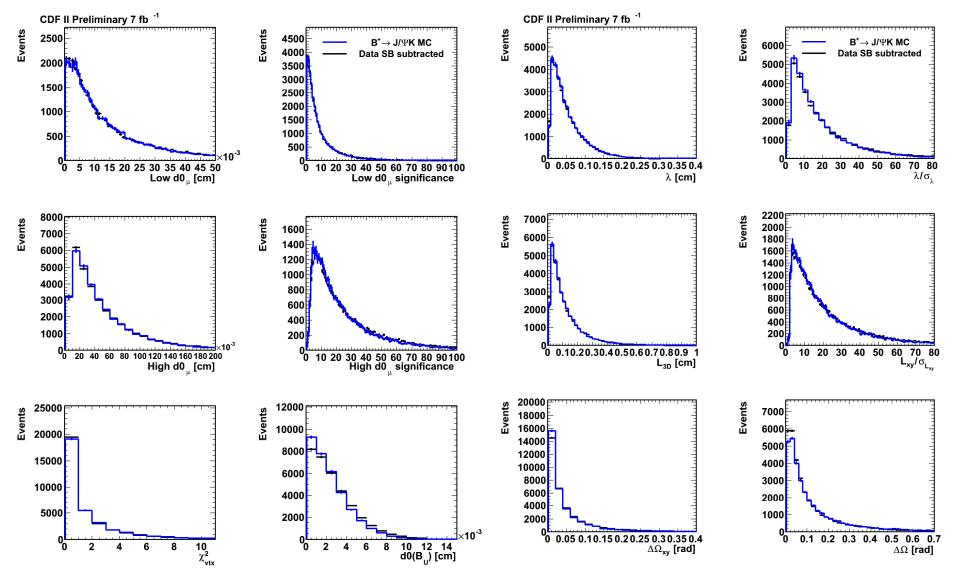
Show data, background and SMx5.6

Compare 90% CLs

- CDF 0.46x10⁻⁸ < $\mathcal{B}(B_s \to \mu^+ \mu^-)$ < 3.9x10⁻⁸
- LHCb $\mathcal{B}(B_s \rightarrow \mu^+ \mu^-) < 1.2 \times 10^{-8}$
- CMS $\mathcal{B}(B_s \rightarrow \mu^+ \mu^-) < 1.6 \times 10^{-8}$

Summary

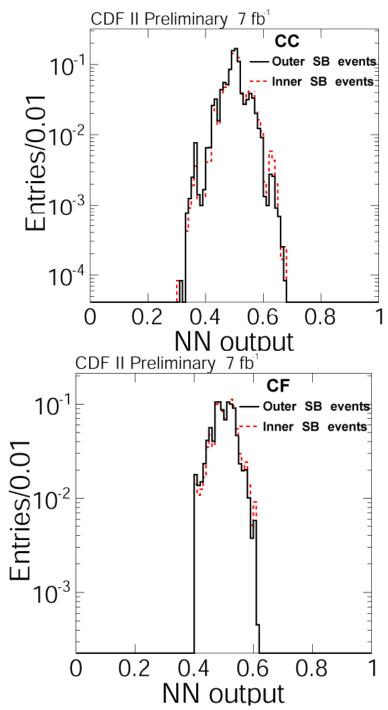
- New analysis with 7 fb⁻¹ and significantly improved sensitivity
- **B**⁰ : consistent with background
- B_s: Observe excess in search window
 - Extract two-sided confidence region on $\mathcal{B}(B_s \rightarrow \mu^+ \mu^-)$
 - Submitted to PRL, arXiv 1107.2304


NN Variables

Rank	Variable	Events C	DF II Preliminary 7 fb ⁻¹	Events	50000 MC Signal
1	$\Delta lpha_{ m 3d}$	Eve	8000 - Angle between	Eve	50000 — MC Signal 40000
2	Isolation		$_{6000} L and p_T(B)$		30000 Isolation
3	Larger $ d_0(\mu) $		4000		20000
4	$\left d_0(B^0_s) ight $		0 0.1 0.2 0.3 0.4 0.5 0.6 0.7		8.5 0.6 0.7 0.8 0.9 1
5	$L_{ m 2d}/\sigma_{L_{ m 2d}}$		$\Delta \Theta_{3D}$ [rad]		Isolation
6	$\chi^2_{ m vtx}$	nts		nts	
7	$L_{ m 3d}$	Events	50000 40000 40000	Events	14000 12000 <i>Imp.parameter</i>
8	Lower $p_T(\mu)$		$_{30000}$ of higher p_T		10000 8000 of B
9	Significance of smaller $ d_0(\mu) $		20000 ⁴⁴⁷¹⁰¹¹		6000
10	$\lambda_{ m 3d}/\sigma_{\lambda m 3d}$		0 0 0 20 40 60 80 100 120 140 160 180 200	5	2000 0 0.01 0.02 0.03 0.04 0
11	$\lambda_{ m _{3d}}$		High d0 $_{\mu}$ [cm]		0 0.01 0.02 0.03 0.04 0 d0(B _{s/d}) [cm
12	Smaller $ d_0(\mu) $	ţ	E	ts	45000
13	$\Delta lpha_{ m 2d}$	Events	40000 35000 20000	Events	40000
14	Significance of larger $ d_0(\mu) $		30000 Relative 2D 25000 decay length		30000 <i>Vertex fit χ2</i>
• p _T r	reweighted to $B^+ \rightarrow J/\psi K$		15000 10000 5000 0 10 20 30 40 50 60 70 80 L _{xy} /σ _{Lx}		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

- Isolation reweighted to ${\rm B}_{s} \to J/\psi \; \varphi$

NN input variables for $B \rightarrow J/\psi K^+$ data vs. MC

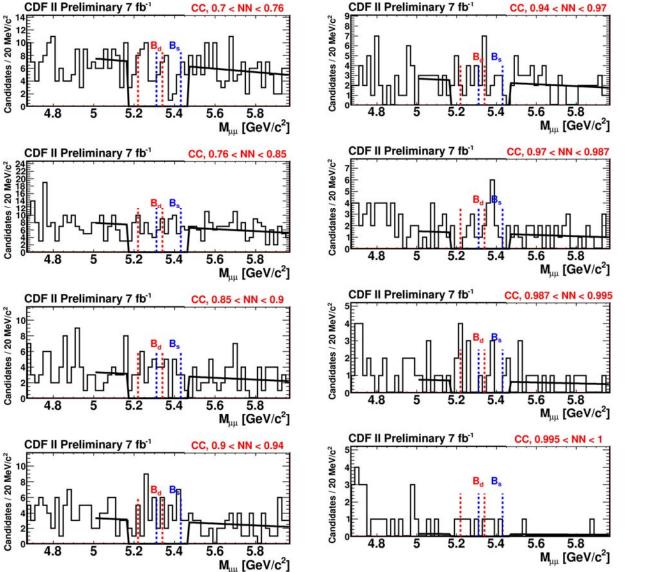


- DPF 2011
 - Kevin Pitts (kpitts@illinois.edu)

NN bias check

- Check of possible NN mass bias.
 - Cut the sideband in half.
 - Train NN on one half as signal, the other as background.
 - See if NN can use input variables differentiate between samples.
- Answer: No.

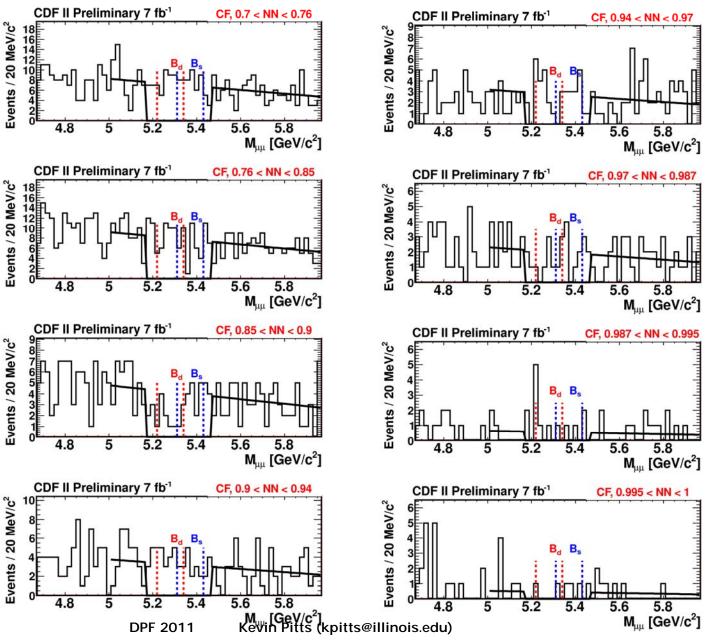
Signal Efficiency

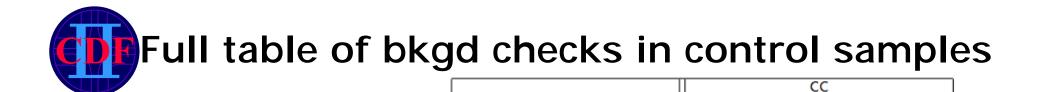

$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \frac{N_{B_s^0}}{N_{B^+}} \frac{\alpha_{B^+}}{\alpha_{B_s^0}} \frac{\epsilon_{B^+}^{trig}}{\epsilon_{B_s^0}^{trig}} \frac{\epsilon_{B^+}^{reco}}{\epsilon_{B_s^0}^{reco}} \frac{1}{\epsilon_{B_s^0}^{NN}} \frac{f_u}{f_s} \mathcal{B}(B^+)$

	CC		CF	
$(\alpha_{B^+}/\alpha_{B_s})$	0.307 ± 0.018	(±6%)	0.197 ± 0.014	(±7%)
$(\epsilon_{B^+}^{trig} / \epsilon_{B_s}^{trig})$	0.99935 ± 0.00012	(<1%)	0.97974 ± 0.00016	(<1%)
$(\epsilon_{B^+}^{\it reco}/\epsilon_{B_s}^{\it reco})$	0.85 ± 0.06	(±8%)	0.84 ± 0.06	(±9%)
$\epsilon_{B_{\mathcal{S}}}^{NN}$ (NN $>$ 0.70)	0.915 ± 0.042	(±4%)	0.864 ± 0.040	(±4%)
$\epsilon_{B_{S}}^{NN}$ (NN $>$ 0.995)	0.461 ± 0.021	(±5%)	0.468 ± 0.022	(±5%)
N _B +	22388 ± 196	(±1%)	9943 \pm 138	(±1%)
f_{U}/f_{S}	3.59 ± 0.37	(±13%)	3.59 ± 0.37	(±13%)
$BR(B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+)$	$(6.01 \pm 0.21) \times 10^{-5}$	(土4%)	$(6.01 \pm 0.21) \times 10^{-5}$	(±4%)
SES (All bins)	$(2.9 \pm 0.5) \times 10^{-9}$	(±18%)	$(4.0 \pm 0.7) imes 10^{-9}$	(±18%)

Single event sensitivity: expect to see 1.9 SM $B_s \rightarrow \mu^+ \mu^-$ events

Unblinded Data


8 NN bins


of CC

sample

Unblinded CF Mass Plots

sample

OS-

SS+

NN cut

0.700 < NN < 0.760

0.760 < NN < 0.850

0.850<NN<0.900

0.900<NN<0.940

0.940<NN<0.970

0.970<NN<0.987

0.987<NN<0.995

0.995<NN<1.000

0.700<NN<0.760

0.760 < NN < 0.850

0.850<NN<0.900

0.900<NN<0.940

0.940<NN<0.970

obsv

203

213

120

116

108

75

35

3

5

2

1

1

pred $217.4 \pm (12.5)$

 $262.0 \pm (14.1)$

 $117.9 \pm (8.6)$

 $112.1 \pm (8.4)$

 $112.7 \pm (8.4)$

 $80.2 \pm (6.9)$

 $67.6 \pm (0.3)$ $32.5 \pm (4.2)$

 $3.0 \pm (0.9)$

 $3.3 \pm (1.0)$

 $1.5 \pm (0.7)$

 $0.9 \pm (0.5)$

 $1.2 \pm (0.6)$

prob(%)

77.7

99.1

44.7

39.4

64.2

68.3

99.8

37.5

55.0

25.4

43.2

56.8

65.9

Good agreement in most sensitive NN bins

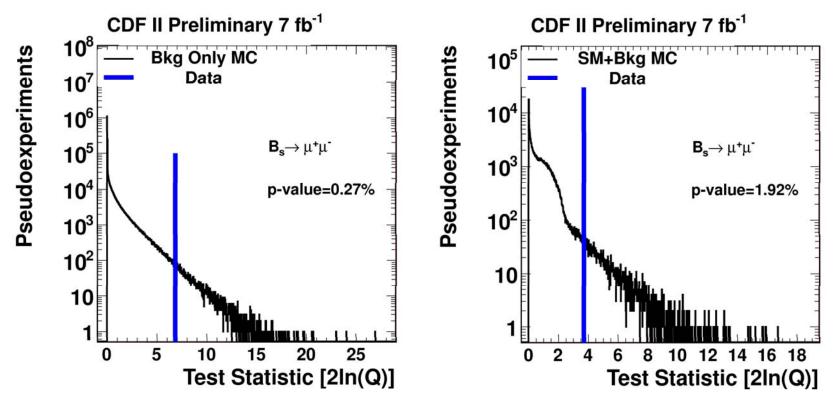
✓ now have sufficient confidence in background estimation

Control sample FM+ is rich >hh background. Good agreement in highest bin

shows that we can accurately

ient		0.970 <nn<0.987< th=""><th>1.5±(0.7)</th><th>2</th><th>43.2</th></nn<0.987<>	1.5±(0.7)	2	43.2
		0.987 <nn<0.995< th=""><th>0.31(0.3)</th><th>0</th><th>74.1</th></nn<0.995<>	0.31(0.3)	0	74.1
		0.995 <nn<1.000< th=""><th>$0.3 \pm (0.3)$</th><th>0</th><th>74.1</th></nn<1.000<>	$0.3 \pm (0.3)$	0	74.1
		0.700 <nn<0.760< th=""><th>5.7±(1.3)</th><th>8</th><th>23.7</th></nn<0.760<>	5.7±(1.3)	8	23.7
	SS-	0.760 <nn<0.850< th=""><th>8.4±(1.6)</th><th>7</th><th>69.8</th></nn<0.850<>	8.4±(1.6)	7	69.8
		0.850 <nn<0.900< th=""><th> 3.3±(1.0)</th><th>6</th><th>14.3</th></nn<0.900<>	3.3±(1.0)	6	14.3
		0.900 <nn<0.940< th=""><th> 2.4±(0.8)</th><th>4</th><th>24.0</th></nn<0.940<>	2.4±(0.8)	4	24.0
		0.940 <nn<0.970< th=""><th> 2.4±(0.8)</th><th>4</th><th>24.0</th></nn<0.970<>	2.4±(0.8)	4	24.0
		0.970 <nn<0.987< th=""><th> 2.1±(0.8)</th><th>0</th><th>12.2</th></nn<0.987<>	2.1±(0.8)	0	12.2
		0.987 <nn<0.995< th=""><th>151(0.7)</th><th>0</th><th>22.3</th></nn<0.995<>	151(0.7)	0	22.3
		0.995 <nn<1.000< th=""><th>0.3±(0.3)</th><th>1</th><th>30.0</th></nn<1.000<>	0.3±(0.3)	1	30.0
		0.700 <nn<0.760< th=""><th>$118.3 \pm (8.0)$</th><th>136</th><th>11.1</th></nn<0.760<>	$118.3 \pm (8.0)$	136	11.1
າ in B-	FM+	0.760 <nn<0.850< th=""><th> 110.5±(8.3)</th><th>121</th><th>22.3</th></nn<0.850<>	110.5±(8.3)	121	22.3
		0.850 <nn<0.900< th=""><th>52.0±(5.4)</th><th>37</th><th>96.3</th></nn<0.900<>	52.0±(5.4)	37	96.3
		0.900 <nn<0.940< th=""><th>37.3±(4.5)</th><th>37</th><th>53.0</th></nn<0.940<>	37.3±(4.5)	37	53.0
t NN		0.940 <nn<0.970< th=""><th>20.1±(3.3)</th><th>20</th><th>52.3</th></nn<0.970<>	20.1±(3.3)	20	52.3
		0.970 <nn<0.987< th=""><th>8.3±(2.0)</th><th>6</th><th>77.1</th></nn<0.987<>	8.3±(2.0)	6	77.1
		0.987 <nn<0.995< th=""><th>87±(2.0)</th><th>3</th><th>97.5</th></nn<0.995<>	87±(2.0)	3	97.5
telv		0.995 <nn<1.000< th=""><th>$20.8 \pm (3.5)$</th><th>24</th><th>30.7</th></nn<1.000<>	$20.8 \pm (3.5)$	24	30.7

predict this background if zero events are observed, "Prob(N>=Nobs)" is the Poisson probability for observing exactly 0 Kevin Pitts (kpitts@illinois.edu) DPF 2011 12-Aug-11


M and Background Expectations for B_s

NN Bin	ϵ_{NN}	$B{ o}hh\;Bkg$	Total Bkg	Exp SM Signal
0.700 < NN < 0.970	20%	0.03	$129.24{\pm}6.50$	$0.26 {\pm} 0.05$
0.970 < NN < 0.987	8%	< 0.01	$7.91 {\pm} 1.27$	$0.11{\pm}0.02$
0.987 < NN < 0.995	12%	0.02	$3.95{\pm}0.89$	$0.16{\pm}0.03$
0.995 < NN < 1.000	46%	0.08	$0.79{\pm}0.40$	$0.59{\pm}0.11$

CF				
NN Bin	ϵ_{NN}	$B{ o}hh\;Bkg$	Total Bkg	Exp SM Signal
0.700 < NN < 0.970	21%	0.01	$146.29{\pm}7.00$	$0.19{\pm}0.04$
0.970 < NN < 0.987	10%	0.01	$11.57{\pm}1.57$	$0.09 {\pm} 0.02$
0.987 < NN < 0.995	8%	0.01	$3.25 {\pm} 0.82$	$0.08 {\pm} 0.01$
0.995 < NN < 1.000	46%	0.03	$2.64{\pm}0.74$	0.43±0.08

- p-value for background-only hypothesis: 0.27%
- p-value for background+SM hypothesis: 1.9%

