Dijet searches in ATLAS

Georgios Choudalakis* ATLAS Collaboration

*University of Chicago

DPF2011 @ Brown August 10, 2011

Overview

Two complementary ways of analyzing dijet events:

- Dijet resonance search in m_{jj}.
- Dijet angular distribution analysis.

In this presentation:

- Flashback of 36 pb^{-1} results [Latest dijet angular analysis].
- Dijet resonance search in m_{jj} with 0.81 fb⁻¹.
- Some deeper discussion about:
 - Model-independent search [BumpHunter].
 - Model-independent limits

Quick flashback to 36 pb $^{-1}$ results, the latest results of the dijet "angular" analysis.

From:

New J. Phys. 13 (2011) 053044, [arXiv:1103.3864v1 [hep-ex]], where both dijet angular and mass distributions are analyzed.

The observables of the angular analysis

The signal is expected in $|y_1 - y_2| < 1.2$, namely $\chi < 3.32$.

$$F_{\chi} = \text{fraction of events in}$$

 $|y_1 - y_2| < 1.2.$

Background: PYTHIA QCD \times *k*-factor from NLOJET++. Systematics: Jet Energy Scale, μ_R and μ_F , PDF.

Summary of results with 36 pb⁻¹

Analysis / observable	95% C.L. Limits (TeV)	
,	Expected	Observed
Excited Quark q*		
Resonance in m_{jj} [Bayesian]	2.07	2.15
$F_{\chi}(m_{jj})$ [Frequentist]	2.12	2.64
Randall-Meade Quantum Black Hole for $n = 6$		
Resonance in m_{jj} [Bayes.]	3.64	3.67
$F_{\chi}(m_{jj})$ [Freq.]	3.49	3.78
F_{χ} for $m_{jj} > 2$ TeV [Freq.]	3.37	3.69
$\frac{dN}{d\chi}$ for $m_{jj} > 2$ TeV [Freq.]	3.46	3.49
Axigluon		
Resonance in m_{jj} [Bayes.]	2.01	2.10
Contact Interaction Λ		
$F_{\chi}(m_{jj})$ [Freq.]	5.7	9.5
$F_\chi(m_{jj})$ [Bayes.]	5.7	6.7
F_{χ} for $m_{jj}>2$ TeV [Freq.]	5.2	6.8
$\frac{dN}{d\chi}$ for $m_{jj} > 2$ TeV [Freq.]	5.4	6.7

Three observables used in the angular analysis:

- Whole $F_{\chi}(m_{jj})$ spectrum
- $P_{\chi} \text{ for } m_{jj} > 2 TeV$

search in m_{jj} .

On to some new results now, from the dijet resonance

Resonance search in dijet mass

Background determined by (smart) fitting $f(x) = p_0 \frac{(1-x)^{p_1}}{x^{p_2+p_3 \ln x}}$, $x \equiv \frac{m_{jj}}{\sqrt{s}}$.

About the function
$$f(x) = p_0 \frac{(1-x)^{p_1}}{x^{p_2+p_3 \ln x}}$$
, $x \equiv \frac{m_{jj}}{\sqrt{s}}$

- Able to fit wonderfully PYTHIA QCD, Alpgen, Herwig, NLOJET++.
- No inflection points. [Unable to fit big bumps.]
- $f(m = \sqrt{s}) = 0$. [A physical property.]
- It is a parabola in log-log scale, except for the numerator which is added to make it go to 0 at \sqrt{s} .
- Known, and used several times before. [e.g., CDF, Phys.Rev.D 79 (2009) 112002].

Event selection

- The obvious: Stable beams, good detector conditions, good vertex, etc.
- m_{jj} in trigger plateau. [>717 GeV]
- Two leading jets be of good quality. [well-measured, away from bad calorimeter regions.] Cost: ~ 3.7%, due to temporary "hole" in calorimeter.
- No other jet of poor quality that has $p_T > 0.3 p_T^{j2}$. [Avoid accidental re-ordering of jets in p_T]. Cost: 0.3%, and would be 0 if it was not for the "hole".
- $|\Delta y| < 1.2$ [Suppress *t*-channel QCD background.]

Trigger efficiency plateau of the 1st unprescaled single-jet trigger. [j180].

Suppression of QCD background

Great sensitivity boost, by selecting central events.

[This coheres with dijet angular analysis, where F_{χ} is, practically, the fraction of events passing this cut.].

The data

The fit, overall, is fantastic: The p-value of the $(-\log L)$ statistic is about 13%.

Event at $m_{jj} = 4 \text{ TeV}$

Both jets at $p_T \simeq 1.8$ TeV.

The BumpHunter hypertest is used to look for excesses

Hypertests, and the BH in specific, are explained in arXiv:1101.0390 [physics.data-an].

What does it do, in brief?

- It counts events in all intervals, and computes Poisson p-values.
- It keeps the smallest Poisson p-value it finds. [This is the BH's "test statistic".]
- It generates several 0-signal pseudo-experiments and scans them too.
- It counts how often a pseudo-spectrum would have any interval that is more significantly discrepant than the one observed in the data. [This is the BH's *p*-value.]

So, what's the point of all this?

- All particular tests combined into one hypertest. [What makes it a hypertest is that its test statistic is not just a metric of discrepancy (like χ^2), but the smallest from an ensemble of p-values .]
- Hypertests account for the trials factor. The BH is aware that many intervals were tried, and its p-value reflects that.
- Sensitive to excesses, without presuming their shape or location.
- It's just one hypertest. Obvious generalizations, e.g. TAILHUNTER.

A demo of sensitivity

Toy MC used; no ATLAS data involved.

Gassian signal is injected, as shown here [At 1000±50 GeV]:

We find the probability of making a claim, as a function of expected signal.

The BUMPHUNTER [followed by the TAILHUNTER], is more sensitive than other tests to this signal. The absolute winner [black] is "cheating": It knows a-priori the signal shape and location.

The search phase of the analysis

The most significant excess found in the data.

All mass intervals, and their Poisson *p*-values, are summarized in this "tomography" plot.

The search phase of the analysis

The *p*-value of the BUMPHUNTER statistic is **62%**. Totally insignificant.

Systematic uncertainties

- Jet Energy Scale: From 2 to 4% at p_T above 100 GeV.
- Jet Energy Resolution: 5% relative uncertainty. Negligible impact on limits.
- Fit uncertainty: Ranges from < 1% at 1 TeV, to $\sim 20\%$ at 4 TeV.
- Luminosity uncertainty: 4.5%

Overlaid JES variations, from -3σ to $+3\sigma$.

Overlaid JER variations, from -3σ to $+3\sigma$.

Limits to specific models

At 95% credibility level, with constant priors:

 $m_{q^*} > 2.91 \text{ TeV}.$ [expected 2.77]

 $m_A > 3.21$ TeV. [expected 3.02]

 $m_{s8} > 1.91 \text{ TeV}$. [expected 1.71]

Limits to Gaussian signal templates

- Gaussian "signals", of various means and widths.
- Approximation to virtually any resonance.
- Systematic uncertainties included, just like for specific models.

Demonstration: approximating $q_{1.5TeV}^*$ with a Gaussian

The two reasons this approximation works:

- **1** Limit of Gaussian \simeq Limit of chopped template.
- 2 Limit \propto acc/nce of chopping \Rightarrow same mass limit, no info. lost.

Summary

- Reviewed the results from 36 pb⁻¹ of 2010.
- Updated the dijet resonance search in m_{jj} with 0.81 fb⁻¹ of data.
- \bullet Model-independent search ($\operatorname{BUMPHUNTER})$ found no significant discrepancy.
- Updated limits to benchmark models, like q^* . (2.91 TeV)
- Added scalar octet to the repertoire.
- Updated model-independent limits.

Backup

- Motivation
- Fitting Pythia
- Smart fit
- 8 Demo of model-independent limits
- Model details
- Old plots

Why inclusive dijet searches?

- Well... because it's such an obvious thing to do! [Devil is in the detail.]
- Theoretical reasons:
 - q* [our "benchmark"]
 - Axigluons, colorons, techni-mesons, etc.
 - Extra dimensions (e.g. Randall-Sundrum graviton, Quantum Black Holes, etc.)
 - Even String theory!
 - ... and the list goes on ... [Tao Han et al, arXiv:1010.4309 [hep-ph]]
- Experimental reasons:
 - Superior hadronic calorimetry.
 - Few %-level JES uncertainty [Accurate ATLAS MC, and in-situ calibration.]
 - Low sensitivity to pile-up etc.
- Analytic reasons:
 - Large SM statistics ⇒
 - Data-driven background estimation.
 - \bullet Very high energies, from early on. [World-best results with just 0.3 pb $^{-1}$ of data.]

Fitting Pythia QCD with
$$f(x) = p_0 \frac{(1-x)^{p_1}}{x^{p_2+p_3\ln x}}$$
, $x \equiv \frac{m_{jj}}{\sqrt{s}}$

Smart fit

Demonstration taken from arXiv:1101.0390.

- To prevent potential signal from biasing the fit, we have an anti-bias mechanism.
- If the first fit gives a χ^2 *p*-value < 0.01, we search for windows to omit from the fit, trying to make the fit better in the sidebands.
- The window search is similar to how the BUMPHUNTER looks for the signal.
- If a window is found that makes the χ^2 p-value > 0.01, we stop. If not, we exclude the window that does the best job.
- The result is that the signal is better defined, and easier to see, because we fit just the sidebands.
- This didn't do anything when fitting the data, but in pseudo-experiments it could kick in.

Demonstration: approximating $s8_{2TeV}$ with a Gaussian

The two reasons this approximation works:

- **1** Limit of Gaussian \simeq Limit of chopped template.
- ② Limit \propto acc/nce of chopping \Rightarrow same mass limit, no info. lost.

Model details

Excited quark (q^*)

- $qg \rightarrow q^* \rightarrow qg$, with SM-quark-like couplings, and compositeness scale $\Lambda = m_{q^*}$.
- PYTHIA → ATLAS sim.
- MRST2007LO* PDF [MC10 tuning, ATLAS-CONF-2010-031].

Scalar octet (s8)

- Taken from arXiv:1010.4309, by Tao Han et al.
- Like a spin-0 heavy gluon.
- MadGraph \rightarrow PYTHIA \rightarrow ATLAS sim.
- Used CTEQ6L1 PDFs [MC09' tuning, ATLAS-PHYS-PUB-2010-002].

Axigluon (A)

- CalcHFP
- MRST2007LO* PDF
- Acceptance obtained from parton-level kinematic cuts, plus chopping at [0.7m_A,1.3m_A].
- Verified, using ATLAS sim., that the chopped A gives very similar limits to the full q* template, so, instead of using actual A templates, we use observed limits from q* templates.
 [Similar treatment of A have been used before. E.g. CDF, Phys.Rev.D 79 (2009) 112002, or CMS PhysRevLett.105.211801, and more recent works.]

Comparison of signal templates

BSM lagrangian densities

Excited quark

$$\left\{L_{gqq^*}=g_{QCD}rac{f_s}{4\Lambda}ar{q}_R^*\sigma^{\mu
u}\lambda_lpha G_{\mu
u}^lpha q_L
ight\}, \, f_s o 1, \, \Lambda o m_{q^*}.$$

Axigluon

$$\left(L_{Aqar{q}}=g_{QCD}ar{q}A_{\mu}^{lpha}rac{\lambda^{lpha}}{2}\gamma^{\mu}\gamma_{5}q
ight)$$
. $A o gg$ forbidden by Parity.

Scalar (color) octet

$$\underbrace{L_{gg8} = g_{QCD} d^{ABC} \frac{\kappa_s}{\Lambda_s} S_8^A F_{\mu\nu}^B F^{C,\mu\nu}}_{ABC}, S_8 = \text{scalar octet}, \kappa_s = \text{coupling} = 1,$$

$$g_{QCD}^2 = 4\pi\alpha_s$$
, $d^{ABC} = SU(3)$ isoscalar factor, $F_{\mu\nu} = SM$ gluons tensor.

Quark contact Interaction

$$\left[L_{qqqq}=rac{\xi g^2}{2\Lambda^2}ar{\Psi}_q^L\gamma^\mu\Psi_q^Lar{\Psi}_q^L\gamma_\mu\Psi_q^L
ight], rac{g^2}{4}=1, \; \xi=+1 \; ext{(destructive interference)}.$$

Dijet m_{jj} limtis with 36 pb⁻¹

Angular analysis, in 36 pb^{-1}

- ullet Systematic uncertainties: Jet Energy Scale, μ_R and μ_F , PDF
- Agreement between data and background:
 - The p-value of the likelihood test in $\frac{dN}{d\chi}$ is > 30% in all m_{jj} bins.

