Search for CP violation in the $B_s - \overline{B}_s$ system with LHCb

DPF 2011, Brown University, Providence

Daan van Eijk

On behalf of the LHCb collaboration

Aug. 10 2011

Outline

LHCb

- Search for New Physics at LHCb
- LHCb detector

$B_s \to J/\psi \, \varphi$

- CP violating phase ϕ_s
- Ingredients for ϕ_s measurement
- Selection
- Proper time resolution and acceptance
- Angular analysis (including angular acceptance)
- Tagging
- Mixing: Δm_s
- ϕ_s Results

Other channels

•
$$B_s \rightarrow J/\psi f_0$$

•
$$B_s \to \varphi \varphi$$
, $B_s \to K^* \overline{K^*}$

•
$$B_s \to K^+ K^-$$

Search for New Physics at LHCb

- Search for New Physics (NP) in LHCb by making precision measurements in loop-mediated processes
- Indirect search for NP via
 - Rare decays
 - CP violation

The LHCb detector

- LHCb is one of the 4 large LHC experiments
- Single arm forward spectrometer: $1.9 < \eta < 4.9$
- Dedicated to heavy flavour physics:
- Dimensions: $20 \text{ m} \times 10 \text{ m} \times 10 \text{ m}$

LHCb performance

Lumi levelling

- · LHCb reconstruction and trigger efficiency sensitive to pile-up
- LHC beams displaced at LHCb interaction point
- Lumi levelling: Beam displacement reduced during fill

Integrated luminosity

- 2010: ∼37 pb⁻¹: Results in this talk are from this dataset
- 2011: ∼620 pb⁻¹
- On schedule for $1 \, {\rm fb}^{-1}$ at the end of 2011

CP violating phase ϕ_s in $B_s \rightarrow J/\psi \, \varphi$

- Final state $J/\psi \varphi$ accessible to both B_s and \overline{B}_s : Interference between decays with and without mixing B_s^0
- Interference measured through weak phase ϕ_s :
 - ϕ_s is the sum of mixing phase and decay phase

Decay phase

• $\phi_{c\bar{c}s}^{SM} = \arg(V_{cb}V_{cs}^*) \approx 0$ + small penguin contribution

 V_{tc}^*

s

Mixing phase:

• $\phi_s^{SM} = -2\,\beta_s \approx -0.04$

 V_{th}

b

6/40

Hich

CP violating phase ϕ_s in $B_s \rightarrow J/\psi \, \varphi$

- Final state $J/\psi \varphi$ accessible to both B_s and \overline{B}_s : Interference between decays with and without mixing $B_s^0 = \frac{\phi_D}{\Phi_s}$
- Interference measured through weak phase ϕ_s :
 - ϕ_s is the sum of mixing phase and decay phase

- New Physics (NP) models could enhance ϕ_s
- $\phi_s \rightarrow \phi_s^{SM} + \Delta \phi^{NP}$

7/40

- ϕ_s weakly constrained by experiments
- Tevatron results show hints for SM deviation

<mark>∍</mark>J/ψø

 ϕ_M

How to measure ϕ_s ?

CP assymetry

• If the final state is a CP eigenstate with eigenvalue $\eta_{\rm f},$ the CP assymetry is defined as

$$A_{CP} \equiv \frac{N(\overline{B} \to f) - N(B \to f)}{N(\overline{B} \to f) + N(B \to f)} \sim \eta_f \sin \phi_s \sin(\Delta m_s t)$$

• Δm_s is the $B_s - \overline{B}_s$ mixing frequency

Requirements to measure A_{CP}

- Need tagging information
- Need to disentangle CP even and CP odd states with angular analysis
- Detector effects dilute the CP assymetry:
 - Proper time resolution (σ_t)
 - Mistag probability (ω)

 $A_{CP} \sim (1 - 2\omega) \exp(-0.5\Delta m_s^2 \sigma_t^2) \eta_f \sin \phi_s \sin(\Delta m_s t)$

• Strength of LHCb: good proper time resolution and tagging power

Ingredients for the ϕ_s analysis at LHCb

Selection and lifetime measurements

- Define common $J/\psi X$ selection
- Measure lifetimes $J/\psi X$ channels

Angular analysis to disentangle different CP eigenstates

• Control channel $B_d \rightarrow J/\psi K^*$

Tagging and mixing

- Determine the initial flavour of the B meson
- Measure mixing frequency Δm_s

ϕ_s measurement

- Physics parameters: $(\Gamma, \Delta\Gamma(=\Gamma_L - \Gamma_H), |A_0|^2, |A_{\parallel}|^2, |A_S|^2, \delta_{\parallel}, \delta_{\perp}, \delta_S, \phi_s, \Delta m_s)$
- Observables: $(t, m_B, \cos \psi, \cos \theta, \phi, q, \omega)$
- Simultaneous fit to all observables

Selection

- Similar selection for all $J/\psi X$ channels
 - Cuts on kinematical, track and vertex quality variables
- In the fit we cut at t > 0.3 ps to suppress prompt background
- · Good mass resolutions, low background levels
- Trigger
 - Single and Dimuon triggers without IP cut: proper time unbiased

Lifetime measurements

- All channels fitted with single exponential
- Proper time resolution model from prompt events:
 - Triple Gaussian: effective resolution $<\sigma_t>=$ 50 fs
- Add events from proper time biased trigger lines
 - Determine proper time acceptance from overlap between unbiased and biased events

Angular analysis

Spin states

- $B_{\rm s}$ is spin 0, decays to J/ψ (spin 1) and φ (spin 1)
- Different orbital angular momentum configurations from spin conservation
- $B_{\rm s}
 ightarrow J/\psi \, arphi$ is admixture of CP even and odd states

•
$$\operatorname{CP}|J/\psi \varphi\rangle = (-1)^L |J/\psi \varphi\rangle$$

• L = 0 and L = 2 states are CP even, L = 1 is CP odd

Transversity basis

12 / 40

Three transversity amplitudes

- CP even: A_{\parallel} and A_0 , CP odd: A_{\perp}
- Use transversity angular distributions ($\psi,\theta,\phi)$ to statistically disentangle CP even and CP odd components

Angular analysis: Control channel $B_d \rightarrow J/\psi K^*$

Angular acceptance correction

- Correct for angular acceptance using MC
- Angular acceptance due to p_T cuts (implicit or explicit)

Results

Projections on transversity angles

• $K\pi$ S-wave component included (5% \pm 2%)

Parameter	LHCb: result \pm stat. \pm syst.	BaBar: result \pm stat. \pm syst.
$ A_{ } ^2$	$0.252 \pm 0.020 \pm 0.016$	$0.211 \pm 0.010 \pm 0.006$
$ A_{\perp} ^2$	$0.178 \pm 0.022 \pm 0.017$	$0.233 \pm 0.010 \pm 0.005$
δ_{\parallel}	$-2.87 \pm 0.11 \pm 0.10$	$-2.93 \pm 0.08 \pm 0.04$
δ_{\perp}	$3.02 \pm 0.10 \pm 0.07$	$2.91 \pm 0.05 \pm 0.03$

LHCb preliminary: LHCb-Conf-2011-02

BaBar: hep-ex/0607081v1

$\Delta\Gamma$ from untagged $B_s \rightarrow J/\psi \, \varphi$ analysis

• $\Delta \Gamma = \Gamma_L - \Gamma_H$ (lifetimes of the light and heavy B_s states)

•
$$B_{s,L} = p |B_s\rangle + q |\overline{B_s}\rangle$$
 , $B_{s,H} = p |B_s\rangle - q |\overline{B_s}\rangle$

- Fit $B_s \to J/\psi \, \varphi$ events without tagging information
- Set $\phi_s = 0$

Tagging

- To measure mixing parameters such as Δm_s one needs information on the flavor of the produced *B* meson
- Indicated by tag decision $q = \pm 1$, with per-event mistag probability ω_i
- Two types: Opposite Side Tagger (OS) and Same Side Tagger (SS)

Daan van Eijk

Tagging power

- Sensitivity of a CP asymmetry directly related to the effective tagging power $\epsilon_{\rm eff} = \epsilon_{\rm tag} D^2 = \epsilon_{\rm tag} (1 2\omega)^2$
- Tagging power represents the effective statistical reduction of the sample size
- With 2010 statistics, SS tagger not calibrated yet
- Use OS tagger only!
- For $B_s
 ightarrow J/\psi \, arphi$: $\omega_{
 m eff} = 32\% \pm 2\%$
- Tagging power $\epsilon D^2 = 2.2\% \pm 0.5\%$
- Will improve when including SS tagger!

Δm_s measurement

• 4 decays:

•
$$B_s \rightarrow D_s(\varphi \pi) \pi$$
 (515 ± 25)

•
$$B_s \rightarrow D_s(K^*K)\pi$$
 (338 ± 27)

- $B_s \rightarrow D_s(KK\pi)\pi$ (283 ± 27)
- $B_s \rightarrow D_s(KK\pi)3\pi$ (245 ± 46)
- 2D (t, m) unbinned simultaneous fit to 4 samples
- LHCb preliminary: $\Delta m_s = 17.63 \pm 0.11 \text{ (stat.)} \pm 0.04 \text{ (syst.)} \text{ ps}^{-1}$
 - CDF: $\Delta m_s = 17.77 \pm 0.10$ (stat.) ± 0.07 (syst.) ps⁻¹ (hep-ex/0609040v1)

$\phi_{\textit{s}}$ results

- No meaningful point estimates with 2010 statistics
- Confidence contours with Feldman-Cousins method
- Systematic effects much smaller than statistical effects

 $\phi_s \in [-2.7, -0.5]$ at 68 % CL SM p-value: 22% (~1.2 σ)

LHCb preliminary: LHCb-Conf-2011-06

ϕ_s prospects

- Analysis for 10 times more data being refereed as we speak
- Between 350 and 400 pb^{-1}
- Preview for 280 pb⁻¹ below
- Toy with 2010 fit results as input, assuming identical LHCb performance
- Expect world best measurement soon!

Other channels: ϕ_s from $B_s \rightarrow J/\psi f_0$

- $f_0(980)$ is a bound $s\overline{s}$ state, just like φ
- Smaller BR than $B_s \rightarrow J/\psi \varphi$
- Big advantage: $J/\psi f_0$ is a CP odd eigenstate, not an admixture as in $B_s \to J/\psi \varphi$
- No angular analysis needed!
- ϕ_s measurement in $B_s \rightarrow J/\psi f_0$ soon, first observation: (arXiv:1102.0206v2)

Evidence for $B_s \rightarrow J/\psi \overline{K^*}$

- Can help control penguin contributions in $B_s \rightarrow J/\psi \, \varphi$
- See for example Faller, Fleischer and Mannel: arXiv:0810.4248v1
- For 36 pb⁻¹: $\mathcal{B}(B_s \to J/\psi \overline{K^*}) = (3.5^{+1.1}_{-1.0}(\text{stat.}) \pm 0.9(\text{syst.})) \times 10^{-5}$
- Assuming that all $K\pi$ pairs in the B_s mass peak originate from K^* 's

LHCb preliminary: LHCb-Conf-2011-25

21 / 40

Daan van Eijk

Penguin decay $B_s \rightarrow K^* \overline{K^*}$: first observation

LHCb preliminary: LHCb-Conf-2011-19

- $\mathcal{B}(B_s \to K^*\overline{K^*}) = (1.95 \pm 0.47 (\text{stat.}) \pm 0.51 (\text{syst.}) \pm 0.29 (f_d/f_s)) \times 10^{-5}$
- In SM: decay phase cancels mixing phase
- Sensitive to NP that could affect box diagrams in a different way than penguin diagrams

• Similar to
$$B_s \to \varphi \varphi$$

Lifetime measurement in $B_s \rightarrow K^+ K^-$

- Also dominated by penguins
- Can constrain NP contributions to $\Delta\Gamma$ and ϕ_s
- Two independent measurements:
 - Absolute measurement
 - Measurement relative to B_d lifetime

- Combined result: $\tau_{B_s} = 1.440 \pm 0.096 (stat.) \pm 0.010 (syst.) \, ps$
- See Paul Sail's talk on Friday

LHCb-Conf-2011-18

Conclusions

- Great performance of LHC and LHCb in 2010 and first half of 2011
- Many ingredients for the ϕ_s measured with first 36 pb⁻¹:
 - Lifetimes in $B \rightarrow J/\psi X$
 - Polarization amplitudes in control channel $B_d
 ightarrow J/\psi K^*$
 - $\Delta\Gamma$ from untagged $B_s \rightarrow J/\psi \, \varphi$ analysis
 - Δm_s from $B_s
 ightarrow D_s \pi$ events
- ϕ_s measurement with \sim 400 pb $^{-1}$ of data will be presented very soon
- · Aim for world's best measurement at the end of this year
- First observations of $B_s \to J/\psi f_0$ and $B_s \to K^* \overline{K^*}$
- Evidence for $B_s \rightarrow J/\psi \overline{K^*}$
- Lifetime measurement in $B_s o K^+ K^-$
- Very exciting times!

Backup

$B_s ightarrow J/\psi \, arphi$ time-dependent functions

$$\begin{aligned} A_{1} &= |a_{0}|^{2} e^{-t/\tau} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s} \sin(\Delta m t) \right] \\ A_{2} &= |a_{\parallel}|^{2} e^{-t/\tau} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s} \sin(\Delta m t) \right] \\ A_{3} &= |a_{\perp}|^{2} e^{-t/\tau} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s} \sin(\Delta m t) \right] \\ A_{4} &= |a_{\parallel}||a_{\perp}|e^{-t/\tau} \left[- \cos(\delta_{\perp} - \delta_{\parallel}) \sin\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_{s} \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m t) \right] \\ A_{5} &= |a_{0}||a_{\parallel}|e^{-t/\tau} \left[- \cos(\delta_{\parallel} - \delta_{0}) \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s} \sin(\Delta m t) \right] \\ A_{6} &= |a_{0}||a_{\perp}|e^{-t/\tau} \left[- \cos(\delta_{\perp} - \delta_{0}) \sin\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \cos(\delta_{\perp} - \delta_{0}) \cos\phi_{s} \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{0}) \cos(\Delta m t) \right] \\ A_{7} &= |a_{5}|^{2} e^{-t/\tau} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s} \sin(\Delta m t) \right] \\ A_{8} &= |a_{5}||a_{\parallel}|e^{-t/\tau} \left[- \sin(\delta_{\parallel} - \delta_{5}) \sin\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin(\delta_{\parallel} - \delta_{5}) \cos\phi_{s} \sin(\Delta m t) + \cos(\delta_{\parallel} - \delta_{5}) \cos(\Delta m t) \right] \\ A_{9} &= |a_{5}||a_{\perp}|e^{-t/\tau} \left[- \sin(\delta_{\perp} - \delta_{5}) \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s} \sin(\Delta m t) \right] \\ A_{10} &= |a_{5}||a_{1}|e^{-t/\tau} \left[- \sin(\delta_{0} - \delta_{5}) \sin\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin(\delta_{0} - \delta_{5}) \cos\phi_{s} \sin(\Delta m t) \right] \\ + \cos(\delta_{0} - \delta_{5}) \cos(\Delta m t) \right] \end{aligned}$$

LHCD

		$\cosh\left(\frac{\Delta\Gamma}{2}t\right)$	$q_T \cos(\Delta m t)$	$\sinh\left(\frac{\Delta\Gamma}{2}t\right)$	$q_T \sin(\Delta m t)$
$ \mathcal{A}_0(t) ^2$	$\frac{ a_0 ^2 e^{-t/\tau}}{1+q_T C}$	1	С	-D	-5
$ \mathcal{A}_{\parallel}(t) ^2$	$\frac{ a_{\parallel} ^2 e^{-t/\tau}}{1+q_T C}$	1	С	- D	-5
$ \mathcal{A}_{\perp}(t) ^2$	$\frac{ a_{\perp} ^2 e^{-t/\tau}}{1+q_T C}$	1	с	+D	+S
$\Im(\mathcal{A}^*_{\parallel}(t)\mathcal{A}_{\perp}(t))$	$\frac{\Re(a_{\parallel}^*a_{\perp})e^{-t/\tau}}{1+q_TC}$	0	0	5	-D
	$\frac{\Im(a_{\parallel}^*a_{\perp})e^{-t/\tau}}{1+q_TC}$	с	1	0	0
$\Im(\mathcal{A}^*_0(t)\mathcal{A}_{\perp}(t))$	$\frac{\Re(a_0^*a_\perp)e^{-t/\tau}}{1+q_TC}$	0	0	5	-D
	$\frac{\Im(a_0^*a_\perp)e^{-t/\tau}}{1+q_TC}$	с	1	0	0
$\Re(\mathcal{A}^*_0(t)\mathcal{A}_{\parallel}(t))$	$\frac{\Re(a_0^* a_{\parallel})e^{-t/\tau}}{1+q_T C}$	1	С	-D	-5
	$\frac{\Im(a_0^*a_{\parallel})e^{-t/\tau}}{1+q_TC}$	0	0	0	0
$ \mathcal{A}_{S}(t) ^{2}$	$\frac{ a_{\mathcal{S}} ^2 e^{-t/\tau}}{1+q_{\mathcal{T}}C}$	1	С	D	S
$\Im(\mathcal{A}_{S}^{*}(t)\mathcal{A}_{\perp}(t))$	$\frac{\Re(a_S^*a_\perp)e^{-t/\tau}}{1+q_TC}$	0	0	0	0
	$\frac{\Im(a_S^*a_\perp)e^{-t/\tau}}{1+q_TC}$	1	С	D	S
$\Re(\mathcal{A}^*_S(t)\mathcal{A}_0(t))$	$\frac{\Re(a_S^*a_0)e^{-t/\tau}}{1+q_TC}$	с	1	0	0
	$\frac{\Im(a_S^*a_0)e^{-t/\tau}}{1+q_TC}$	0	0	S	- D
$\Re(\mathcal{A}_{S}^{*}(t)\mathcal{A}_{\parallel}(t))$	$\frac{\Re(a_{S}^{*}a_{\parallel})e^{-t/\tau}}{1+q_{T}C}$	с	1	0	0
	$\frac{\Im(a_S^*a_{\parallel})e^{-t/\tau}}{1+q_TC}$	0	0	5	- D

Daan van Eijk

$B_s ightarrow J/\psi \, arphi$ angular functions

amplitudes	Angular function	
$ a_0 ^2$	$2\cos^2\psi\left(1-\sin^2 heta\cos^2\phi ight)$	
$ a_{\parallel} ^2$	$\sin^2\psi\left(1-\sin^2\theta\sin^2\phi\right)$	
$ a_{\perp} ^2$	$\sin^2\psi\sin^2\theta$	
$\Im(a_\parallel a_\perp)$	$-\sin^2\psi\sin2 heta\sin\phi$	
$\Re(a_0 a_\parallel)$	$rac{1}{2}\sqrt{2}\sin2\psi\sin^2 heta\sin2\phi$	
$\Im(a_0 a_\perp)$	$rac{1}{2}\sqrt{2}\sin 2\psi\sin 2 heta\cos\phi$	
$ a_S(t) ^2$	$rac{2}{3}(1-\sin^2 heta\cos^2\phi)$	
$\Re(a^*_S(t)a_{\parallel}(t))$	$\frac{1}{3}\sqrt{6}\sin\psi\sin^2 heta\sin2\phi$	
$\Im(a^*_S(t)a_\perp(t))$	$\frac{1}{3}\sqrt{6}\sin\psi\sin2 heta\cos\phi$	
$\Re(a_S^*(t)a_0(t))$	$\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$	

Proper time resolution

σ_1 [fs]	σ_2 [fs]	σ_3 [fs]	f_2	f_3
33.7 ± 1.0	64.6 ± 1.9	184 ± 14	0.46 ± 0.04	0.017 ± 0.004

- Dilution from Gaussian proper time
- $D = \exp\left(-\Delta m_s^2 \sigma_t^2/2\right)$
- $D = (1 0.46 0.017) \exp(-0.5 * 17.8^2 * 0.0337^2) + 0.46 \exp(-0.5 * 17.8^2 * 0.0646^2) + 0.017 * \exp(-0.5 * 17.8^2 * 0.184^2) = 0.674$
- Converting back to effective proper time resolution
- $<\sigma_t>=$ 50 fs $^{-1}$

Selection details

Decay mode	Cut parameter	Stripping	Final selection
all tracks	$\chi^2_{\rm track}/{\rm nDoF}$	< 5	< 4
	clone distance		> 5000
$J/\psi \rightarrow \mu^+\mu^-$	$\Delta LL \mu \pi$	> 0	> 0
	$min(p_T(\mu^+), p_T(\mu^-))$		> 0.5 GeV/c
	$\chi^2_{\rm ytx}/{\rm nDoF}(J/\psi)$	< 16	< 16
	$ M(\mu^{+}\mu^{-}) - M(J/\psi) $	$< 80 \mathrm{MeV}/c^2$	\in [3030, 3150] MeV/ c^2
$\phi \rightarrow K^+ K^-$	$\Delta LLK\pi$	> -2	> 0
	$p_T(\phi)$	> 1 GeV/c	> 1 GeV/c
	$M(\phi)$	\in [980, 1050] MeV/ c^2	\in [1007.46, 1031.46] MeV/ c^2
	$\chi^2_{\rm vtx}/{\rm nDoF}(\phi)$	< 16	< 16
$B_s^0 \rightarrow J/\psi \phi$	$M(B_{s}^{0})$	\in [5100, 5550] MeV/ c^2	\in [5200, 5550] MeV/ c^2
	$\chi^2_{\rm viv}/{\rm nDoF}(B^0_s)$	< 10	< 10
	$\chi^2_{\rm DTF(B+PV)}/n {\rm DoF}(B^0_s)$		< 5
	$\chi^2_{IP}(B^0_s)$		< 25
	$\chi_{\rm IP,next}(B_s^0)$	-	> 50

Decay mode	Cut parameter	Stripping value	Final value
K^+	$\Delta \ln \mathcal{L}_{K_T}$	> -2	> 0
	$\Delta \ln \mathcal{L}_{Kp}$	-	> -2
	$\chi^2_{track}/nDoF(K^+)$	< 5	< 4
	$p_T(K^+)$	> 1 GeV/c	> 1 GeV/c
	$p(K^+)$	-	$> 10 \mathrm{GeV}/c$
$B^+ \rightarrow J/\psi K^+$	$M(B^{+})$	\in [5100, 5550] MeV/ c^2	\in [5100, 5450] MeV/c
	$\chi^2_{\rm vtx}(B^+)/{\rm nDoF}$	< 10	< 10
	$\chi^2_{\rm DTF(B+PV)}(B^+)/n\rm{DoF}$	-	< 5
	$\chi^2_{IP}(B^+)/nDoF$	~	< 25

Decay mode	Cut parameter	Stripping value	Final value
$K^{*0} \rightarrow \mathrm{K}^+ \pi^-$	$\Delta \ln \mathcal{L}_{K\pi}$	> -2	> 0
	$\Delta \ln \mathcal{L}_{Kp}$	-	> -2
	$\chi^2_{\text{track}}/\text{nDoF}(K, \pi)$	< 5	< 4
	$p_T(K^{*0})$	> 1 GeV/c	> 1 GeV/c
	$ M(K^{+}\pi^{-}) - M(K^{*0}) $	$< 90 {\rm MeV}/c^2$	$< 70 MeV/c^2$
	$\chi^{2}_{vtx}(K^{*0})$	< 16	< 16
$B^0 \rightarrow J/\psi K^{*0}$	$M(B^{0})$	\in [5100, 5550] MeV/ c^2	\in [5100, 5450] MeV/ c^2
	$p_T(B^0)$	> 2 GeV/c	> 2 GeV/c
	$\chi^2_{\rm vtx}(B^0)/{\rm nDoF}$	< 10	< 10
	$\chi^2_{\text{DTF(B+PV)}}(B^0)/\text{nDoF}$	-	< 5
	$\chi^2_{\rm IP}(B^0)/{\rm nDoF}$	-	< 25

Systematics

Main systematics

- Relative uncertainty in dilution from flavour tagging (7%)
- Proper time resolution (6%)
- Ignoring S-wave (11%)

All this does not change the contours significantly

Systematics	% error	Scale of effect change
~	on $\sin \phi_s$	in rad to 68%CL 1D interval
Mistag calibration on p_0 and p_1	7%	~ 0.1
Proper time resolution	6%	~ 0.06
Possible S-wave contribution	11%	~ 0.1
Change Δm_s		~ 0
Background model	-	~ 0
Angular acceptance		~ 0

Angular acceptance

$$\epsilon = rac{N_{ ext{unbiased}\&biased}^{ ext{sig}}}{N_{ ext{unbiased}}^{ ext{sig}}}$$
 $\epsilon = rac{t_{ ext{unbiased}}}{t_{ ext{biased}}}$

Tagging diagram

Tagging

•
$$\epsilon_{\text{eff}} = \epsilon_{\text{tag}} (1 - 2w)^2 = \epsilon_{\text{tag}} D_{eff}^2 = D^2$$

•
$$D = \sqrt{\epsilon_{ ext{tag}}}(1-2w)$$

•
$$\frac{1}{D\sqrt{N}} = \frac{1}{D_{\rm eff}\sqrt{N\epsilon_{\rm tag}}} = \frac{1}{\sqrt{\epsilon_{\rm tag}}D_{\rm eff}\sqrt{N}}$$

• Calibrate mistag probability using self-tagging decay $B^+
ightarrow J/\psi K^+$

•
$$\omega_i = p_0 + p_1(\eta - < \eta >)$$

• Float p_0 and p_1 within their errors in fits

LHCb-Conf-2011-03

Δm_s measurement

- red line is likelihood value in case of infinite Δm_s
- $-2(\ln L \ln L_{max}) = N^2$
- *N* is number of *σ*'s

35 / 40

• So this is $\sqrt{20.94} = 4.6\sigma$

Feldman Cousins method

- The confidence level contours are constructed using p-values of each gridpoint on the $\phi_s-\Delta\Gamma$ plane
- Fit the data twice:
 - 1) float all parameters to find the L_{max,data} at gridpoint
 - 2) float all other parameters but fix ϕ_s and $\Delta\Gamma$ to the gridpoint values
- Get the difference of loglikelihood values $\Delta LL_{data} = \ln L_{max,data} \ln L_{fix,data}$
- Generate a large number of toys at gridpoint (other parameters fixed to the one found in the second fit in first step)
- For each toy fit twice:
 - 1) floating all parameters to find L_{max,toy}
 - 2) float other parameters but fix ϕ_s and $\Delta\Gamma$ at gridpoint.
- Get the difference of loglikelihood values $\Delta LL_{toy} = \ln L_{max,toy} \ln L_{fix,toy}$
- The fraction of toys having $\Delta LL_{toy} > \Delta LL_{data}$ is the p-value of the gridpoint

Penguins

Assymetry

$$A_{CP} \equiv \frac{N(\overline{B} \to f) - N(B \to f)}{N(\overline{B} \to f) + N(B \to f)} = \frac{\eta_f \sin \phi_s \sin \Delta m t}{\cosh \frac{\Delta \Gamma t}{2} + \eta_f \cos \phi_s \sinh \frac{\Delta \Gamma t}{2}}$$

$$\Gamma_{B \to f}(t) = |A_f|^2 (1 + |\lambda_f|^2) \frac{e^{-\Gamma t}}{2} .$$

$$(\cosh \frac{\Delta \Gamma t}{2} - D_f \sinh \frac{\Delta \Gamma t}{2} + C_f \cos \Delta m t - S_f \sin \Delta m t) \qquad (1)$$

$$|a|^2 = e^{-\Gamma t}$$

$$\Gamma_{B \to \overline{f}}(t) = |\overline{A}_{\overline{f}}|^2 \left| \frac{q}{p} \right|^{-} (1 + |\overline{\lambda}_{\overline{f}}|^2) \frac{e^{-\zeta \cdot \zeta}}{2} \cdot \\ (\cosh \frac{\Delta \Gamma t}{2} - \overline{D}_{\overline{f}} \sinh \frac{\Delta \Gamma t}{2} - \overline{C}_{\overline{f}} \cos \Delta m t + \overline{S}_{\overline{f}} \sin \Delta m t)$$
(2)

$$\Gamma_{\overline{B} \to f}(t) = |A_f|^2 \left| \frac{p}{q} \right|^2 (1 + |\lambda_f|^2) \frac{e^{-\Gamma t}}{2} \cdot \int_{0}^{\infty} \frac{1}{q} \int_{0}^{\infty}$$

$$\cosh \frac{\Delta I t}{2} - D_f \sinh \frac{\Delta I t}{2} - C_f \cos \Delta m t + S_f \sin \Delta m t)$$
(3)

$$\Gamma_{\overline{B} \to \overline{f}}(t) = |\overline{A}_{\overline{f}}|^2 (1 + |\overline{\lambda}_{\overline{f}}|^2) \frac{e^{-\Gamma t}}{2} \cdot (\cosh \frac{\Delta\Gamma t}{2} - \overline{D}_{\overline{f}} \sinh \frac{\Delta\Gamma t}{2} + \overline{C}_{\overline{f}} \cos \Delta m t - \overline{S}_{\overline{f}} \sin \Delta m t)$$
(4)

where

$$D_{f} = \frac{2\operatorname{Re}[\lambda_{f}]}{1+|\lambda_{f}|^{2}} , \quad C_{f} = \frac{1-|\lambda_{f}|^{2}}{1+|\lambda_{f}|^{2}} , \quad S_{f} = \frac{2\operatorname{Im}[\lambda_{f}]}{1+|\lambda_{f}|^{2}} ,$$

$$\overline{D}_{\overline{f}} = \frac{2\operatorname{Re}[\overline{\lambda}_{\overline{f}}]}{1+|\overline{\lambda}_{\overline{f}}|^{2}} , \quad \overline{C}_{\overline{f}} = \frac{1-|\overline{\lambda}_{\overline{f}}|^{2}}{1+|\overline{\lambda}_{\overline{f}}|^{2}} , \quad \overline{S}_{\overline{f}} = \frac{2\operatorname{Im}[\overline{\lambda}_{\overline{f}}]}{1+|\overline{\lambda}_{\overline{f}}|^{2}} .$$
(5)

Daan van Eijk

LHCb trigger

- Trigger important:
- σ_{bb} is less than 1 % of total inelastic cross section
- BR of interesting B decays $< 10^{-5}$
- *b*-hadrons long-lived:
 - Separate primary and secondary vertices
- *b*-hadrons have large mass:
 - Decay products with high p_T
- L0: Search for high $p_T \mu, e, \gamma$ and hadron candidates
- HLT: Software trigger
- HLT1: L0 confirmation
- HLT2: Global event resconstruction
 - Inclusive and exclusive selections

Trigger scheme

