

Dark Matter Searches with SuperCDMS

Oleg Kamaev
Queen's University
for the SuperCDMS collaboration

DPF-2011, August 9-13, Providence, RI

The SuperCDMS Collaboration

California Institute of Technology

Z. Ahmed, J. Filippini, S.R. Golwala, D. Moore, R.W. Ogburn

Case Western Reserve University

D. Akerib, C.N. Bailey, M.R. Dragowski, R. Hennings-Yeomans

Fermi National Accelerator Laboratory

D. A. Bauer, F. DeJongh, J. Hall, D. Holmgren, L. Hsu, E. Ramberg, R.L. Schmitt, R.B. Thakur, J. Yoo

Massachusetts Institute of Technology

A. Anderson, E. Figueroa-Feliciano, S. Hertel, S.W. Leman, K.A. McCarthy, P. Wikus

NIST

K. Irwin

Queen's University

P. Di Stefano, C. Crewdson, O. Kamaev, J. Fox, S. Liu, C. Martinez, P. Nadeau, W. Rau, Y. Ricci, M. Verdier

Santa Clara University

B. A. Young

Southern Methodist University

J. Cooley, B. Karabuga, H. Qiu, S. Scorza

SLAC/KIPAC

M. Asai, A. Borgland, D. Brandt, P.L. Brink, W. Craddock, E. do Couto e Silva, G.Godfrey, J.Hasi, M. Kelsey, C. Kenney, P.C. Kim, R. Partridge, R. Resch, A. Tomada, D. Wright

Stanford University

B. Cabrera, M. Cherry, R. Moffat, L. Novak, M. Pyle, M. Razeti, B. Shank, S. Yellin, J. Yen

Syracuse University

M. Kos, M. Kiveni, R. W. Schnee

Texas A&M

A. Jastram, K. Koch, R. Mahapatra, M. Platt, K. Prasad, J. Sander

University of California, Berkeley

M. Daal, T. Doughty, N. Mirabolfathi, A. Phipps, B. Sadoulet, D. Seitz, B. Serfass, D. Speller, K.M. Sundqvist

University of California, Santa Barbara

R. Bunker, D.O. Caldwell, H. Nelson

University of Colorado Denver

B.A. Hines, M.E. Huber

University of Florida

T. Saab, D. Balakishiyeva, B. Welliver

University of Minnesota

J. Beaty, H.Chagani, P. Cushman, S. Fallows, M. Fritts, V. Mandic, X. Qiu, A. Reisetter, J. Zhang

University of Zurich

S. Arrenberg, T. Bruch, L. Baudis, M. Tarka

CDMS: WIMP Detection Strategy

Direct Detection:

Search for WIMP signal via nuclear recoil elastic scattering in the detector.

State-of-the-art detector:

- Low temperature (< 50 mK) semiconductor detectors;
- Read out phonons from the recoil together with ionization signal.

Background Reduction and Rejection:

Goal = Maintain "<1 event expected background"

- Go deeper to reduce cosmogenic muons
- Active muon veto
- Shielding and material-purity
- Powerful background discrimination in the analysis

CDMS-II Experiment

• Soudan Underground Lab, USA (2090 m.w.e. depth)

CDMS-II Experiment

- Soudan Underground Lab, USA (2090 m.w.e. depth)
- 5 Towers of 6 detectors (4.6 kg Ge, 1.1 kg Si)

• Active/passive shielding against muons and environmental

CDMS Shielding

Passive shielding:

- Pb: shielding from γ 's
- Polyethylene: moderate neutrons from fission and from (α,n) interactions from U/Th decays
- Copper: shielding from γ 's.

Active shielding:

• Muon veto to reject events from cosmic rays.

Z-sensitive Ionization Phonon Detector (ZIP)

Phonon side:

- 4 quadrants of phonon sensors
- provide phonon energy and position info

Charge side:

- 2 concentric electrodes (inner and outer)
- provide ionization energy and veto

Nuclear/ Electron recoil discrimination:

Signature of Nuclear Recoil: reduced ionization relative to phonon signal. 7

Surface Events Discrimination

Surface Events Discrimination

CDMS-II Results

- spectrum-averaged exposure after all cuts is 194 kg-days
- 2 events in the NR band pass the timing cut

Result:

- $7.0 \times 10^{-44} \text{ cm}^2$ @ 70 GeV/c^2
- 3.8×10^{-44} cm² @ 70 GeV/c² (combined with previous CDMS data)

DPF-2011 Oleg Kamaev

CDMS + EDELWEISS Combined Result

EDELWEISS:

- Laboratoire Souterrain de Modane, France (4800 m.w.e. depth)
- 10x400 g Ge bolometers @ 20 mK
 - Ionization measurement
 - Heat measurement
- Threshold 20 keV

- Total exposure 384 kg-days (comparable to 379 kg-days of CDMS-II total)
- Observed 5 candidate events
- Expected background ~3 events

DPF-2011 Oleg Kamaev

CDMS + EDELWEISS Combined Result

To combine limits:

- Sum exposure-weighted efficiencies;
- Combine events regardless of experiment of origin;
- Calculate the limit.

Agreed on the method before exchanging data!

CDMS + EDELWEISS Combined Result

DPF-2011 Oleg Kamaev

CDMS, SuperCDMS, and beyond

To reach the goals we need:

- increase mass
- decrease background leakage

CDMS, SuperCDMS, and beyond

• increase mass

• decrease background leakage

Redesign the detectors! 15

iZIP Detector

Redesigned detector:

interleaved **Z**-dependent Ionization and **P**honon detector (**iZIP**):

- 4 charge channels
- 8 phonon channels

iZIP improvements:

- ✓ Detectors are x2.5 thicker;
- ✓ Optimized phonon sensor layout;
- ✓ Modified phonon mask;
- ✓ Interleaved charge electrodes and phonon sensors on both sides of the detector.

DPF-2011 Oleg Kamaev

iZIP Detector

✓ Interleaved charge electrodes and phonon sensors on both sides of the detector:

iZIP: Charge Discrimination

✓ Interleaved charge electrodes and phonon sensors on both sides of the detector:

Charge channels can be used to reject surface events.

iZIP: Charge Discrimination

[mm] Z

✓ Interleaved charge electrodes and phonon sensors on both sides of the detector:

Charge channels can be used to reject surface events.

iZIP: Yield Discrimination

- Yield-only discrimination of surface events in NR band is $>10^3$:1.
- Discrimination starts to degrade at ~10 keV.
- Measurements of yield and charge asymmetry combined discrimination are limited by neutron background events in NR band.

Data taken at Test Facility above ground with NR background of ~7 evt/hr

DPF-2011 Oleg Kamaev

iZIPs @ Soudan

- iZIP detectors are arranged in SuperTowers
- The first iZIP SuperTower was installed at Soudan in October 2010:

CDMS-II Tower

S12 G37 S10 G35 G34 G38

iZIP SuperTower

iZIPs @ Soudan

- iZIP detectors are arranged in SuperTowers
- The first iZIP SuperTower was installed at Soudan in October 2010:
 - o engineering run with the goal to perform background assessment
 - o run was interrupted due to the fire in mine shaft in March 2011
 - o collected data to assess stability of the detectors underground and improve operation of iZIPs in the future runs

CDMS-II Tower

iZIP SuperTower

wafers with Pb-210 on top and bottom (for engineering run to assess discrimination against surface events)

iZIPs @ Soudan

- iZIP detectors are arranged in SuperTowers
- The first iZIP SuperTower was installed at Soudan in October 2010:
 - o engineering run with the goal to perform background assessment
 - o run was interrupted due to the fire in mine shaft in March 2011
 - o collected data to assess stability of the detectors underground and improve operation of iZIPs in the future runs
- Approved to deploy a total of 5 iZIP SuperTowers at Soudan.

CDMS-II Tower

iZIP SuperTower

wafers with Pb-210 on top and bottom (for engineering run to assess discrimination against surface events)

SuperCDMS @ SNOLAB

- SuperCDMS @ Soudan will eventually become background limited due to cosmogenic neutrons;
- to get to $\sim 3 \times 10^{-46}$ cm² (100 kg of Ge phase) need to move to deeper site.

SuperCDMS @ SNOLAB

- SuperCDMS @ Soudan will eventually become background limited due to cosmogenic neutrons;
- to get to $\sim 3 \times 10^{-46}$ cm² (100 kg of Ge phase) need to move to deeper site.

Detector Test Facility @ SNOLAB:

- need a shielded underground TF to characterize detectors w/o the presence of limiting neutron background;
- background achievable @ SNOLAB with 5' of water shielding (MC simulations):
 - <1 Hz of external gammas
- short turn-around time between runs.

Summary

- o CDMS-II has completed operation:
 - has set a limit of 3.8×10^{-44} cm² @ 70 GeV/c² on WIMP-nucleon spin-independent cross-section;
 - observed 2 candidate events in the first analysis of the final data taken between July 07 and Sept. 08;
 - cannot claim nor reject these events as possible WIMPs;
 - CDMS and EDELWEISS collaborations have produced a common analysis of their results that gives improved constraint on WIMPs heavier than 50 GeV/c².
- New generation of CDMS advanced detectors, iZIP:
 - meets requirements for SuperCDMS @ Soudan to reach WIMP-nucleon cross-section of 5×10^{-45} cm² for 60 GeV/c² WIMPs with <1 expected background event;
 - SuperCDMS @ Soudan is expected to install 5 iZIP SuperTowers and resume operations later this year.

Backup Slides

iZIP: Phonon Pulse Shape Discrimination

Additional background rejection technique:

- Phonon pulse shape for surface ER events look different than for bulk NR;
- Pulse shape quantities are included into calculated χ^2 function for event;
- Discrimination based on χ^2 difference between surface ER and NR events is 10^4 :1 with ~60% NR passage efficiency.

• Environmental 222 Rn in air can deposit long-lived 210 Pb β source on surfaces 210 Pb, 22 yr

DPF-2011 Oleg Kamaev