Current and Future Dark Matter Searches with SuperCDMS

Oleg Kamaev
Queen’s University
for the SuperCDMS collaboration

DPF-2011, August 9-13, Providence, RI
The SuperCDMS Collaboration

California Institute of Technology

Case Western Reserve University
D. Akerib, C.N. Bailey, M.R. Dragowski, R. Hennings-Yeomans

Fermi National Accelerator Laboratory

Massachusetts Institute of Technology
A. Anderson, E. Figueroa-Feliciano, S. Hertel, S.W. Leman, K.A. McCarthy, P. Wikus

NIST
K. Irwin

Queen’s University
P. Di Stefano, C. Crewson, O. Kamaev, J. Fox, S. Liu, C. Martinez, P. Nadeau, W. Rau, Y. Ricci, M. Verdier

Santa Clara University
B. A. Young

Southern Methodist University
J. Cooley, B. Karabuga, H. Qiu, S. Scorza

SLAC/KIPAC

Stanford University
B. Cabrera, M. Cherry, R. Moffat, L. Novak, M. Pyle, M. Razeti, B. Shank, S. Yellin, J. Yen

Syracuse University
M. Kos, M. Kiveni, R. W. Schnee

Texas A&M
A. Jastram, K. Koch, R. Mahapatra, M. Platt, K. Prasad, J. Sander

University of California, Berkeley

University of California, Santa Barbara
R. Bunker, D.O. Caldwell, H. Nelson

University of Colorado Denver
B.A. Hines, M.E. Huber

University of Florida
T. Saab, D. Balakishiyeva, B. Welliver

University of Minnesota
J. Beaty, H. Chagani, P. Cushman, S. Fallows, M. Fritts, V. Mandic, X. Qiu, A. Reisetter, J. Zhang

University of Zurich
S. Arrenberg, T. Bruch, L. Baudis, M. Tarka
CDMS: WIMP Detection Strategy

Direct Detection:
Search for WIMP signal via nuclear recoil elastic scattering in the detector.

State-of-the-art detector:
- Low temperature (< 50 mK) semiconductor detectors;
- Read out phonons from the recoil together with ionization signal.

Background Reduction and Rejection:
Goal = Maintain “<1 event expected background”
- Go deeper to reduce cosmogenic muons
- Active muon veto
- Shielding and material-purity
- Powerful background discrimination in the analysis
• Soudan Underground Lab, USA (2090 m.w.e. depth)
CDMS-II Experiment

- Soudan Underground Lab, USA (2090 m.w.e. depth)
- 5 Towers of 6 detectors (4.6 kg Ge, 1.1 kg Si)
- Active/passive shielding against muons and environmental radioactivity.
Passive shielding:
• Pb: shielding from γ’s
• Polyethylene: moderate neutrons from fission and from (α,n) interactions from U/Th decays
• Copper: shielding from γ’s.

Active shielding:
• Muon veto to reject events from cosmic rays.
Z-sensitive Ionization Phonon Detector (ZIP)

Phonon side:
- 4 quadrants of phonon sensors
- provide phonon energy and position info

Charge side:
- 2 concentric electrodes (inner and outer)
- provide ionization energy and veto

Nuclear/ Electron recoil discrimination:

Signature of Nuclear Recoil: reduced ionization relative to phonon signal.
Surface Events Discrimination

Low-yield ER surface events

DPF-2011
Oleg Kamaev
Introduce:

phonon timing parameter = phonon pulse risetime + offset from ionization pulse
CDMS-II Results

- Spectrum-averaged exposure after all cuts is 194 kg-days
- 2 events in the NR band pass the timing cut

DPF-2011
Oleg Kamaev

Result:
- $7.0 \times 10^{-44} \text{ cm}^2 \text{ @ } 70 \text{ GeV/c}^2$
- $3.8 \times 10^{-44} \text{ cm}^2 \text{ @ } 70 \text{ GeV/c}^2$
 (combined with previous CDMS data)

EDELWEISS:

- Laboratoire Souterrain de Modane, France (4800 m.w.e. depth)
- 10x400 g Ge bolometers @ 20 mK
 - Ionization measurement
 - Heat measurement
- Threshold 20 keV

- Total exposure 384 kg-days (comparable to 379 kg-days of CDMS-II total)
- Observed 5 candidate events
- Expected background ~3 events
To combine limits:
• Sum exposure-weighted efficiencies;
• Combine events regardless of experiment of origin;
• Calculate the limit.
Agreed on the method before exchanging data!
Strongest limit: $3.3 \times 10^{-44} \text{ cm}^2$ for 90 GeV/c2 WIMP

Improvement up to a factor 1.6 above 50 GeV/c2
To reach the goals we need:
• increase mass
• decrease background leakage

· CDMS-II (completed)
 o 4 kg Ge for ~2 years
 o $3.8 \times 10^{-44} \text{ cm}^2$

Current phase:
• SuperCDMS @ Soudan
 o 10 kg Ge for ~2 years
 o $5 \times 10^{-45} \text{ cm}^2$

Future:
• SuperCDMS @ SNOLAB
 o 100 kg Ge for ~3 years
 o $3 \times 10^{-46} \text{ cm}^2$
To reach the goals we need:
• increase mass
• decrease background leakage

Redesign the detectors!
Redesigned detector: **interleaved Z-dependent Ionization and Phonon detector (iZIP):**

- 4 charge channels
- 8 phonon channels

Appears to meet needs of SuperCDMS @ SNOLAB.

iZIP improvements:

- Detectors are x2.5 thicker;
- Optimized phonon sensor layout;
- Modified phonon mask;
- Interleaved charge electrodes and phonon sensors on both sides of the detector.

DPF-2011
Oleg Kamaev

76 mm x 25 mm
0.6 kg
Interleaved charge electrodes and phonon sensors on both sides of the detector:
Interleaved charge electrodes and phonon sensors on both sides of the detector:

Charge channels can be used to reject surface events.

Surface Events:
Ionization signal appears only on one side of the detector.

Bulk Events:
Equal but opposite ionization signal appears on both sides.

Ionization lines
Phonon sensors

DPF-2011
Oleg Kamaev
iZIP: Charge Discrimination

Interleaved charge electrodes and phonon sensors on both sides of the detector:

Charge channels can be used to reject surface events.

Surface Events:
Ionization signal appears only on one side of the detector.

Bulk Events:
Equal but opposite ionization signal appears on both sides.

Surface event discrimination is $>10^4:1$

DPF-2011
Oleg Kamaev
Yield-only discrimination of surface events in NR band is $>10^3:1$.

Discrimination starts to degrade at ~ 10 keV.

Measurements of yield and charge asymmetry combined discrimination are limited by neutron background events in NR band.

Data taken at Test Facility above ground with NR background of ~ 7 evt/hr
iZIPs @ Soudan

• iZIP detectors are arranged in SuperTowers
• The first iZIP SuperTower was installed at Soudan in October 2010:

CDMS-II Tower iZIP SuperTower

- S12
- G37
- S10
- G35
- G34
- G38

- Z1
- G48
- Z2
- G47
- Z3
- G52
• iZIP detectors are arranged in SuperTowers
• The first iZIP SuperTower was installed at Soudan in October 2010:
 o engineering run with the goal to perform background assessment
 o run was interrupted due to the fire in mine shaft in March 2011
 o collected data to assess stability of the detectors underground and improve operation of iZIPs in the future runs

CDMS-II Tower

iZIP SuperTower

wafers with Pb-210 on top and bottom
(for engineering run to assess discrimination against surface events)
iZIPS @ Soudan

- iZIP detectors are arranged in SuperTowers
- The first iZIP SuperTower was installed at Soudan in October 2010:
 - engineering run with the goal to perform background assessment
 - run was interrupted due to the fire in mine shaft in March 2011
 - collected data to assess stability of the detectors underground and improve operation of iZIPS in the future runs
- Approved to deploy a total of 5 iZIP SuperTowers at Soudan.

CDMS-II Tower

iZIP SuperTower

wafers with Pb-210 on top and bottom (for engineering run to assess discrimination against surface events)
• SuperCDMS @ Soudan will eventually become background limited due to cosmogenic neutrons;
• to get to $\sim 3 \times 10^{-46}$ cm2 (100 kg of Ge phase) need to move to deeper site.
SuperCDMS @ SNOLAB

- SuperCDMS @ Soudan will eventually become background limited due to cosmogenic neutrons;
- to get to $3 \times 10^{-46} \text{ cm}^2$ (100 kg of Ge phase) need to move to deeper site.

Detector Test Facility @ SNOLAB:
- need a shielded underground TF to characterize detectors w/o the presence of limiting neutron background;
- background achievable @ SNOLAB with 5’ of water shielding (MC simulations):
 - <1 Hz of external gammas
 - <1 neutron/day
- short turn-around time between runs.
Summary

- CDMS-II has completed operation:
 - has set a limit of $3.8 \times 10^{-44} \text{ cm}^2 @ 70 \text{ GeV/c}^2$ on WIMP-nucleon spin-independent cross-section;
 - observed 2 candidate events in the first analysis of the final data taken between July 07 and Sept. 08;
 - cannot claim nor reject these events as possible WIMPs;
 - CDMS and EDELWEISS collaborations have produced a common analysis of their results that gives improved constraint on WIMPs heavier than 50 GeV/c2.

- New generation of CDMS advanced detectors, iZIP:
 - meets requirements for SuperCDMS @ Soudan to reach WIMP-nucleon cross-section of $5 \times 10^{-45} \text{ cm}^2$ for 60 GeV/c2 WIMPs with <1 expected background event;
 - SuperCDMS @ Soudan is expected to install 5 iZIP SuperTowers and resume operations later this year.

- Intend to start running 100 kg at SNOLAB in 2015.
Backup Slides
iZIP: Phonon Pulse Shape Discrimination

Additional background rejection technique:

- Phonon pulse shape for surface ER events look different than for bulk NR;

- Pulse shape quantities are included into calculated χ^2 function for event;

- Discrimination based on χ^2 difference between surface ER and NR events is $10^4:1$ with ~60% NR passage efficiency.
• Environmental 222Rn in air can deposit long-lived 210Pb β source on surfaces

210Pb, 22 yr

- 63.6 keV
 - BR 16\pm3%

- 210Bi*
 - γ
 - 46.539 keV
 - 4.25\pm0.04%

- Expected signatures:
 - low-energy β decay, but final state of 17 keV decay results in peak \sim46 keV
 - delayed 1.16 MeV β from 210Bi
 - delayed 210Po α

- 16.96 keV, BR 84\pm3%

- Mostly Auger electron emission
- 24.6\pm0.8% emit Flourescent x-rays

Extraction by H. Nelson

Nucl. Data Tables A4, 1 (1968)
Nucl. Data Tables A6, 235 (1969)
Nucl. Data Tables A9, 119 (1971)