

GÖTTINGEN

Search for Universal Extra Dimensions in the Likesign Dimuon Channel at DØ

Jason Mansour for the DØ Collaboration

August 10th, 2011

- The DØ experiment
- Introduction: Universal Extra Dimensions
- Samples used
- Backgrounds
 - QCD multijet
 - Charge mismeasurement
- Multivariate analysis
- Conclusions

GEORG-AUGUST-UNIVERSITÄT

The DØ Experiment

The DØ Detector

- General purpose detector, 4π coverage
- Track reconstruction:
 - Silicon Microstrip Tracker (SMT), $|\eta| < 3$,
 - Central Fiber Tracker (CFT), |η| < 2
- LiAr/Uranium sampling calorimeter
- Muon chambers, $|\eta| < 2$
- 2 Tesla solenoid + toroid

Tevatron @ Fermilab

- Proton-Antiproton-Collider
- √s = 1.96 TeV
- Run II int. Luminosity: 10.38 fb⁻¹
- 2 Detectors: DØ and CDF

08/10/2010

J. Mansour – Search for UED in the Likesign Dimuon Channel at DØ

- Historically: Attempt to unify electromagnetism and GR by Kaluza & Klein (KK) (1921/26)
- One additional spatial dimension
- ... which we don't see, since it is compactified ("rolled up")
- "Universal": All fields propagate in extra dimension, not just gravity
- Particles moving in extra dim. have higher $E_{\kappa in}$ \rightarrow seemingly higher mass in 4D \rightarrow Kaluza-Klein excitation

 $n R^{-1}$

 $3 R^{-1}$

 $2 R^{-1}$

 R^{-1}

()

- Minimal UED parameters: inv. Radius R⁻¹ ≈ 200...320 GeV, Cutoff scale Λ ≈ 10000 GeV
- Quantisation
 - \rightarrow Periodic boundary conditions
 - \rightarrow Discrete masses,

 $m_n^2 \sim m_0^2 + (n / R)^2$

Size of extra dimension: $\hbar c / 200 \text{ GeV}^{-1} \approx 10^{-3} \text{ fm}$

m

• Conversation of momentum in extra dimension \rightarrow Conservation of KK-Excitation, KK-Parity $P_{KK} = (-1)^n$ \rightarrow Lightest KK-Partner (LKP) stable \rightarrow Candidate for dark matter!

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

mUED: Production & Decay

← Typical mass spectrum • Possible leptonic decay chain: $p \bar{p} \rightarrow Q_1 Q_1 \rightarrow$ $Z_1 Z_1 / Z_1 W_1 / W_1 W_1 \rightarrow$ 2-4 leptons • & MET •

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

mUED: Production & Decay

91 • Possible leptonic decay chain:

> $p \bar{p} \rightarrow Q_1 Q_1 \rightarrow Q_1 \rightarrow$ $Z_1Z_1 / Z_1W_1 / W_1W_1 \rightarrow$

2-4 leptons • & MET •

08/10/2010

 Q_1

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

mUED: Production & Decay

g1 Typical mass spectrum **9**1 • Possible leptonic Qı q decay chain: Z_1 $p \bar{p} \rightarrow Q_1 Q_1 \rightarrow Q_2 Q_2 \rightarrow Q_2 Q_2 \rightarrow Q_2 Q_2 \rightarrow Q$ q $Z_1Z_1 / Z_1W_1 / W_1W_1 \rightarrow$ L ν_1 2-4 leptons • & MET • 1, γ_1 • Phenomenology: very similar to R-Parity conserving SUSY: Q_1 Neutralinos $\leftrightarrow \gamma_1 / Z_1$ Sleptons \leftrightarrow KK-Leptons UED etc.

08/10/2010

J. Mansour – Search for UED in the Likesign Dimuon Channel at DØ

SUSY

08/10/2010

GEORG-AUGUST-UNIVERSITÄT Göttingen

Final State / Why Dimuon?

- 2-4 leptons & MET
- If masses of the KK-Bosons and KK-leptons ○ similar → leptons ○ very "soft"
 - \rightarrow below reconstruction threshold
- Demand two muons and MET \rightarrow but: large backgrounds (Z \rightarrow µµ)
- So: Two muons of same sign and MET
- Compromise between low SM-background and sensitivity for soft leptons
- Sensitive for new physics, esp. UED and SUSY

 q_L^*

nea

Events / Bir

Ifar

Data:

- Using 7.3 fb⁻¹ of Run II data
- Single muon triggers

Background Monte Carlo:

- ALPGEN+PYTHIA for Z+Jets, W+Jets, ttbar
- PYTHIA for Diboson (WW, ZZ, WZ)
- Normalized to NLO (prediction by MCFM)
- Luminosity profile reweighed to data, Z+jets: Z Boson p_{τ} distribution reweighed to NLO prediction.

Signal:

- Selected points covering $R^{-1} = 200 320 \text{ GeV}$
- Generated with PYTHIA 6.421, using CTEQ5L PDFs

- "Real" LS Dimuon
 - (e.g. Diboson, $ZZ \rightarrow 4\ell$)
- Muons from Jets
 - Z + jets $\rightarrow \mu^+\mu^- + \mu + \dots$
 - W + jets
 - QCD multijet (bb, cc̄)
- Charge mismeasurement
 - $Z \rightarrow \mu^+ \mu^- \rightsquigarrow \mu^+ \mu^+$

- "Real" LS Dimuon
 - (e.g. Diboson, $ZZ \rightarrow 4\ell$) 🖌
- Muons from Jets
 - Z + jets $\rightarrow \mu^+\mu^- + \mu + \dots \checkmark$
 - W + jets
 - QCD multijet (bb, cc)
- Charge mismeasurement
 - $Z \rightarrow \mu^+ \mu^- \rightsquigarrow \mu^+ \mu^+$

QCD is hard:

- Perturbation theory breaks down at low energies (α ≈ 1)
- Heuristic models exist, but don't agree very well with data:
 - angular distributions ($\Delta \phi$),
 - bb cross section, ...
- Small BR to likesign => would have to generate lots of MC
 - => Model multijet from data!

jet

What distinguishes signal from QCD?

Signal:

- 2 LS muons + MET
- Jets due to ISR, underlying event. Prompt muons.
- Muon angles uncorrelated
- Direction of jets uncorrelated to muons

QCD background:

- Jets + muons due to b/c decay
- Muons coming from jets. Nonprompt muons.
- Muons tend to be back to back
- Directions of muons and jets correlated

jet

=> use muon *isolation* to separate signal from QCD

- Signal sample with isolated muons, QCD enriched sample with one non-isolated muon.
- Reweight QCD sample to be an estimation of QCD BG in signal sample
 - Determine reweightings in QCD dominant region (isolated muon pt < 10 GeV)

- Signal sample with isolated muons, QCD enriched sample with one non-isolated muon.
- Reweight QCD sample to be an estimation of QCD BG in signal sample
 - Determine reweightings in QCD dominant region (isolated muon pt < 10 GeV)

- "Contamination" in QCD enriched sample from electroweak processes (W/Z+jets)
- Estimate this from MC, and subtract
 - \rightarrow Final QCD estimation:

- "Real" LS Dimuon
 - (e.g. Diboson, $ZZ \rightarrow 4\ell$) 🖌
- Muons from Jets
 - Z + jets $\rightarrow \mu^+\mu^- + \mu + \dots \checkmark$
 - W + jets
 - QCD multijet (bচ, cc) 🗸
- Charge mismeasurement
 - $Z \rightarrow \mu^+ \mu^- \rightsquigarrow \mu^+ \mu^+$

Backgrounds

- "Real" LS Dimuon
 - (e.g. Diboson, $ZZ \rightarrow 4\ell$) 🖌
- Muons from Jets
 - Z + jets $\rightarrow \mu^+\mu^- + \mu + \dots \checkmark$
 - W + jets
 - QCD multijet (bচ, cc) ✔
- Charge mismeasurement -
 - $Z \rightarrow \mu^+ \mu^- \rightsquigarrow \mu^+ \mu^+$

 Charge flip (CF): Event with µ+µgets mismeasured as likesign

- Occurs more often at high pt, as muon track straightens
- Tiny fraction can lead to big contamination, due to Z peak
- Included in detector simulation, but is that good enough?

Estimate charge flip content in our selection:

- Idea: Two independent charge measurements: Muon system (Q_{muon}) and matched central track (Q_{trk}, default)
 - Tracker measurement is much more accurate. (Charge measurement efficiency ε_{trk} >> ε_{muon})
- Number of (dis-)agreements between Q_{muon} and Q_{trk} is related to the probability of charge mis-measurement

Charge flip estimation II

Charge flip estimation II

Charge flip estimation II

Data vs. BG

GEORG-AUGUST-UNIVERSITÄT

Data vs. BG II

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Comparison of variables

- Most important variables: Δφ(μ,μ), leading pT, MT2
- Njets has lower impact in MVA
- Different correlations in BG/Signal

Correlation Matrix (signal)

Rank	Variable	Importance
1	dPhi	0,138
2	pt1	0,127
3	MT2	0,122
4	chisq_2	0,105
5	chisq_1	0,073
6	pt2	0,064
7	pair_Mass	0,048
8	Num Jets	0,018

Correlation Matrix (background) DØ preliminary, 7.3 fb⁻¹ Linear correlation coefficients in % 100 Significance -20 19 14 8 14 41 45 100 80 14 68 42 100 45 MT1 74 40 -19 9 74 60 69 100 51 -34 42 -1 MT2 METpt2 72 -15 7 79 100 68 35 40 21 100 73 14 pair Mass 77 4 20 Num Jets 12 100 17 14 0 24 79 MissingEt 100 74 -20 11 8 -7 9 8 chisq_2 100 7 3 5 -40 chisq_1 100 2 7 100 21 -15 -34 -19 dPhi -60 51 40 pt2 100 73 72 7 8 -80 36 74 19 pt1 100 77 -100

pij piz dphi chisq chisq Missinger Jois Massiz MTT Significance

BDT Training + Output

- Multivariate analysis: Take correlations between variables into account
- Using boosted decision tree (BDT)
- Classification from -1: maximally BG-like to +1: maximally signal-like
- One tree trained for each signal point

Events / Bin

Systematics

Source	Rel. uncert.
Luminosity	6.1 %
PDF	2.0 %
JES	1.0 %
QCD	35.0 %
W xsec	8.5 %
Z xsec	3.5 %
Diboson xsec	7.0 %
Ttbar xsec	14.8 %

- Note: ttbar background small \rightarrow mostly irrelevant
- Largest contributions: Luminosity + QCD
- Now put everything together...

- Performed search for UED in 7.3 fb⁻¹ of DØ data
- Simple model of QCD background, working well
- Charge mismeasurement BG well understood

Conclusions:

- No excess over background found
 - \rightarrow Proceed to set limits
- Analysis is in review, expecting PRL shortly

Thank you.

08/10/2010

J. Mansour – Search for UED in the Likesign Dimuon Channel at DØ