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Higgs production at the Tevatron

SM Higgs production
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Gluon fusion easily dominates
the other production mechanisms




Higgs final states
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Our event selection is simple:
two high p, leptons and
missing transverse energy



The analysis strategy

1. Cast a wide net, we seek
to make the analysis as
inclusive as possible to
maximize signal

2. Put great effort into
making sure background
model is accurate,
checking against control
regions in data

3. Use multivariate
techniques to separate
signal from background
based on event
kinematics
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Expect only about 10 events
per experiment at 165 GeV/c?
after trigger, reconstruction,
and event selection



Standard Model backgrounds

« Our backgrounds are Ww, Wz, ZZ, Drell-Yan,
W+y, W+jets, and top

* We need to separate out a small signal from a
large background

 Even in CDF’s most sensitive channel, we still
only have S/B~0.01 after preselection cuts
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An example of kinematic separation
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Improvements from CDF

« Maximizing acceptance is
the goal, motivates the cone of /(Ad)? +(An)? = AR < 0.4
improvements o,
* The largest improvement

came from recalculating

the isolation /
« CDF also adds in

u” candidate

.
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likelihood based forward
electrons

» Also have the usual
Increase in data

spoilinge”




The new isolation

 With the leptons being close
together in AR, mutual isolation 5 >

: : : cone of \/(Aq)) +(An)° =AR<04
spoilage is possible
 CDF reevaluates the isolations, ,~ N
removing likely electron or ’
muons from the cone
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Events/0.1 rad

The new Isolation’s impact
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This improved our sensitivity in our low MIl channel
by a factor of 3!



Cross-checking the background modeling
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able to define a region, rely
on cross-section
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Diboson cross-sections

* Measuring diboson cross-
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Multivariate discriminants

» Using chosen event
kinematics, we create
BDTs (DY) or NNs (CDF)
trained on background
and signal models

» Data gets fed in to create
a final discriminant which
can be used for a limit

* Allows roughly a 10-20%
improvement over a
traditional cut based
analysis
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Getting the best sensitivity

* We can greatly increase
our sensitivity by dividing
the data into different
channels

 Allows us to take
advantage of different
signals and backgrounds
in the different channels
 Discriminants are
optimized for signal,
background, and
Kinematics unique to each
channel
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Not exclusively opposite-sign

End up with the same-sign

Both CDF and DY have same-sign channels that take
advantage of associated production
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The channels used by CDF

Main

Most Important

Channel Main Signal Background kingmatic
variables
OS dileptons, 0 Jets gg—H WW LRyww AR Hy
OS dileptons, 1 Jet gg—H DY AR, m(ILE;), E;
OS dileptons, 2+ Jets Mixture t-tbar H;, AR, M,
OS dileptons, low M, 0 or 1 Jet gg—H W+y p(12), p+(11), E(I1)
SS dileptons, 1+ Jet WH->WWW | W+Jets E., YEJ5, M,
Tri-leptons, no Z candidate WH->WWW W<z E., AR cse, Type(lll)
Tri-leptons, Z candidate, 1 Jet ZH->ZWW WZ Jet E, AR,J., E;
Tri-leptons, Z candidate, 2+ Jets ZH—>ZWW Z+Jets M;, M7, ARy
OS dilepton, electron + hadronic tau | gg—H W+Jets AR, T id variables
OS dilepton, muon + hadronic tau gg—H W+Jets AR, T id variables

What I'm focusing on today, see other talks for details
on the rest
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Systematic uncertainties

 There are two
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nuisance parameters in i
the final fit and limit
calculations




The limits from the two experiments
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CDF sets a 95% CL limit DA sets a 95% CL limit
from 156-175 GeV/c? from 163-168 GeV/c?
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The combined limits

Tevatron Run Il Preliminary H-WW Combination, L < 8.6 fb™
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CDF and D@ ruled out the range of 156-177 GeV/c? at the
95% confidence level
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Compare to last DPF in 2009
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Huge improvement, left plot is even full combination
compared to just H—WW on the right
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Cataloging improvements

CDF Run Il Preliminary, m =160 GeV
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We have done very well to lower the limit with both data
and analysis improvements
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Conclusions and QOutlook

* The high mass Higgs search at CDF and DQ have been
very successful

- Drove first exclusion since LEP
* We now have welcome competition from ATLAS and
CMS
» We are trying to help out at low mass as much as we
can

- Sensitivity goes down to 130 GeV/c?

- Want to exclude as much of 100-185 GeV/c? as possible
 Looking for one final update with both improvements and
the utilization of the final data set from the Tevatron
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