Update on the search for H→WW at the Tevatron

Ben Carls
University of Illinois at Urbana-Champaign
For the CDF and DØ Collaborations

Higgs production at the Tevatron

Gluon fusion easily dominates the other production mechanisms

Higgs final states

Our event selection is simple: two high p_T leptons and missing transverse energy

The analysis strategy

- 1. Cast a wide net, we seek to make the analysis as inclusive as possible to maximize signal
- 2. Put great effort into making sure background model is accurate, checking against control regions in data
- 3. Use multivariate techniques to separate signal from background based on event kinematics

Expect only about 10 events per experiment at 165 GeV/c² after trigger, reconstruction, and event selection

Standard Model backgrounds

- Our backgrounds are WW, WZ, ZZ, Drell-Yan,
 W+γ, W+jets, and top
- We need to separate out a small signal from a large background
- Even in CDF's most sensitive channel, we still only have S/B~0.01 after preselection cuts

An example of kinematic separation

- As previously mentioned we take advantage of kinematics to separate signal out
- For example, $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ between leptons is a measure of spatial separation

 ΔR separates the red Higgs signal from the many backgrounds

Improvements from CDF

- Maximizing acceptance is the goal, motivates the improvements
- The largest improvement came from recalculating the isolation
- CDF also adds in likelihood based forward electrons
- Also have the usual increase in data

The new isolation

- With the leptons being close together in ΔR , mutual isolation spoilage is possible
- CDF reevaluates the isolations, removing likely electron or muons from the cone

$$Isolation = \frac{E_T^{cone} - E_T^{from \, muon}}{E_T^{muon}}$$

The new isolation's impact

This improved our sensitivity in our low MII channel by a factor of 3!

Cross-checking the background modeling

- For each background, we preferably have a control region to check our modeling of it
- Not always possible, for *WW*, *WZ*, and *ZZ* we are not able to define a region, rely on cross-section measurement

For top, use opposite-sign dileptons, 2+jets and a b-tag

For *W*+jets, use same-sign dileptons

For $W+\gamma$, use same-sign dileptons for $M_{IJ} < 16 \text{ GeV/c}^2$

Diboson cross-sections

- Measuring diboson crosssection provides a powerful indication the analysis is working
- Same analysis techniques are used as in the $H \rightarrow WW \rightarrow lvlv$ search

$$\sigma(pp \to WW) = 12.1 \pm 0.9 \text{ (stat.)}^{+1.6}_{-1.4} \text{ (syst.)} \text{ [pb]}$$

Both measurements agree very well with theory

$$\sigma(pp \to WZ) = 3.7 \pm 0.6 \text{ (stat.)}^{+0.6}_{-0.4} \text{ (syst.)} \text{ [pb]}$$

Multivariate discriminants

- Using chosen event kinematics, we create
 BDTs (DØ) or NNs (CDF) trained on background and signal models
- Data gets fed in to create a final discriminant which can be used for a limit
- Allows roughly a 10-20% improvement over a traditional cut based analysis

The red Higgs signal gets separated from backgrounds

Getting the best sensitivity

- We can greatly increase our sensitivity by dividing the data into different channels
- Allows us to take advantage of different signals and backgrounds in the different channels
- Discriminants are optimized for signal, background, and kinematics unique to each channel

Not exclusively opposite-sign

Both CDF and DØ have same-sign channels that take advantage of associated production

The channels used by CDF

	Channel	Main Signal	Main Background	Most Important kinematic variables
1	OS dileptons, 0 Jets	gg→H	WW	$LR_{HWW}, \Delta R_{II}, H_{T}$
	OS dileptons, 1 Jet	gg→H	DY	ΔR_{\parallel} , $m_{T}(II,E_{T})$, E_{T}
	OS dileptons, 2+ Jets	Mixture	t-tbar	H_{T} , ΔR_{\parallel} , M_{\parallel}
	OS dileptons, low M_{\parallel} , 0 or 1 Jet	gg→H	W+y	p _T (I2), p _T (I1), E(I1)
	SS dileptons, 1+ Jet	WH→WWW	W+Jets	E_T , $\sum E_T^{jets}$, M_ll
	Tri-leptons, no Z candidate	WH→WWW	WZ	E_{T} , ΔR_{II}^{close} , Type(III)
	Tri-leptons, Z candidate, 1 Jet	ZH→ZWW	WZ	Jet E_T , ΔR_{lj} , E_T
	Tri-leptons, Z candidate, 2+ Jets	ZH→ZWW	Z+Jets	$M_{jj}, M_T^H, \Delta R_{WW}$
	OS dilepton, electron + hadronic tau	gg→H	W+Jets	$\Delta R_{l\tau}$, τ id variables
	OS dilepton, muon + hadronic tau	gg→H	W+Jets	$\Delta R_{l\tau}$, τ id variables

What I'm focusing on today, see other talks for details on the rest

Systematic uncertainties

- There are two categories of systematics impacting the final discriminant, shape and rate (normalization)
- The uncertainties get accounted for as nuisance parameters in the final fit and limit calculations

The limits from the two experiments

CDF sets a 95% CL limit from 156-175 GeV/c²

DØ sets a 95% CL limit from 163-168 GeV/c²

The combined limits

CDF and DØ ruled out the range of $156-177~{\rm GeV/c^2}$ at the 95% confidence level

Compare to last DPF in 2009

Huge improvement, left plot is even full combination compared to just $H \rightarrow WW$ on the right

Cataloging improvements

We have done very well to lower the limit with both data and analysis improvements

Conclusions and Outlook

- The high mass Higgs search at CDF and DØ have been very successful
 - Drove first exclusion since LEP
- We now have welcome competition from ATLAS and CMS
- We are trying to help out at low mass as much as we can
 - Sensitivity goes down to 130 GeV/c²
 - Want to exclude as much of $100-185 \text{ GeV/c}^2$ as possible
- Looking for one final update with both improvements and the utilization of the final data set from the Tevatron