

Measurement of the top-pair production cross-section at <u>ATLAS</u>

Saleem, M (University of Oklahoma) On behalf of the ATLAS Collaboration DPF 2011 (Aug 08 – Aug 13, 2011)

Saleem, M (University of Oklahoma)

Top quark pair production

Production: $\sigma_{tt}(LHC) \sim 160 \text{ pb}$

b-ie

Total Cross section @ 7TeV

approx. NNLO : 164.6^{+11.4}

cross section LHC = 20 x Tevatron

b-je

205 2000

Why measure the top pair production cross section in the various decay channels :

- ✓ Test of perturbative QCD and of SM description of the top quark decay.
- Important background in searches for Higgs and BSM physics
- Might reveal new physics that modifies the production and/or decay of top quarks.

9.6 %

pb

(m_t : 172.5 GeV)

arXiv:0907.2527

Top decay and event classification

Saleem, M (University of Oklahoma)

Measurement in Atlas with 3pb⁻¹

- ✓ Measurement of top quark pair production cross section
 - Single lepton and dilepton channel, 3 pb⁻¹
- Observe 46 candidates $\sigma_{t\bar{t}}$ =145±31(stat.) $^{+42}_{-27}$ (syst.) pb $\sigma_{t\bar{t}}$ [pb] ATLAS NLO QCD (pp) (2.9 pb⁻¹ Approx. NNLO (pp) 577 NLO QCD (pp) CMS 10² (3.1 pb⁻¹) ---- Approx. NNLO (pp EPJC71(2011 CDF D0 300 ATLAS: single and 250 dilepton 10 200 **CMS**: dilepton 150 100 6.5 75 3 5

√*s* [TeV]

Data samples (Today's Talk)

- ❑ Data collected in 2010, 2011 at PP collision @ √s = 7TeV.
- Analysis performed (today's talk):
 - Data collected in 2010 : 45 pb⁻¹
 - ✓ Lepton (e, μ) + jets
 - ✓ Used Data : 35 pb⁻¹

➢ Data collected in 2011 : 2.04 fb⁻¹

- ✓ Dilepton (ee, µµ, eµ)
- ✓ Used Data (partial data) : 0.70 fb⁻¹

Combination :

- ✓ Dilepton (0.70 fb⁻¹)
- ✓ Single lepton (35 pb⁻¹)

Cross section Measurements

1 lepton + jets channel (35 pb⁻¹)

Dilpton channel (0.70 fb⁻¹)

Object definition and Event Selection

09th Aug 2011

Cross section Measurements (1 Lepton + jets) Using 35pb⁻¹

Lepton + Jets: Analysis Strategy

Measurement strategy (multivariate) :

- ✓ exploits the difference in kinematic distributions of signal and background events.
- Projective Likelihood (LH) is used: to separate signal from bkg (both analysis with and without b-tag)
- Discriminant constructed from multiple variables
- MC signal and background models these variables for building LH discriminant
- Fit the likelihood discriminant distribution in data by sum of two "templates", signal and bkg, and get the N_{sig}

$$\sigma_{t\bar{t}} = \frac{N_{sig}}{\int Ldt \times \varepsilon_{sig}}$$

Lepton + Jets: Background Estimate

Backgrounds:

- W+jets backgrounds
 - ➤ Shape is determined by MC
 - ➢ Normalization from fit
- Small Bkgd (Z+jets , diboson , single top)
 - ➤ Shape from MC
 - Normalization from NLO calculation
- > QCD multijet (Fake lepton)
 - Due to mis-ID of lepton, not well modeled in simulation
 - ≻ Used (for example) matrix method for µ channel

$$N_{\text{loose}} = N_{\text{fake, }\mu} + N_{\text{real, }\mu}$$
$$N_{\text{fight}} = \sum_{\substack{\text{fake} \\ \text{tight}}}^{\text{fake, }\mu} + \sum_{\substack{\text{real} \\ \text{Etight}}}^{\text{real}} N_{\text{real, }\mu}$$

Lepton + Jets: Analysis (No Btag)

11

Fit To The Data (No BTag)

- Cross-section is extracted from a fit of projective likelihood discriminant reconstructed with the chosen set variables :
 - ✓ Combined cross-section: 3-jet(exclusive), 4-jet(inclusive):

Lepton + Jets: Analysis (With Btag)

Entries/0.1

- Cross section is extracted from a fit of projective likelihood (split in 6 channels : 3, 4, \geq 5jet e, μ)
- > Lepton η , exp(-8xA), exp(-4xH_{T.3p}); mean of b-tag weight of 2 jets with highest b-tag weight.
- Profile LH fit extracts:
 - ✓ 16 normalization parameters including $\sigma_{t\bar{t}}$
- Systematic uncertainties : 11% HF fraction in W+jets (7%) B-tagging Calibration (7%)

 $\sigma_{tt} = 186 \pm 10(stat.)^{+21}_{-20}(syst.) \pm 6(lumi.) pb$

$$\delta\sigma_{t\bar{t}}/\sigma_{t\bar{t}} = 13\%$$

1-lepton Analysis Summary

Complementary and consistent results are obtained from similar analysis with and w/o b-tag information

 ✓ Baseline and complementary cross section measurements are in agreement within uncertainties

✓ Also consistent with theoretical prediction (164.6 $^{+11.4}_{-15.7}$ pb)

Cross section Measurements (2 Leptons) Using 0.70 fb⁻¹

2 lepton Analysis Strategy

Cross section estimated by counting No. of signal events

Backgrounds:

(1) Z^*/γ ($\rightarrow ee/\mu\mu$) + jets backgrounds

✓ Estimated w/data & assisted with MC

② Fake from QCD, W+jets (using Data driven methods)

✓ For QCD: Matrix method – same as in case of 1-lepton analysis.

③ Other SM backgrounds

✓ Single top, 2-boson, Z*/γ (→ $\tau \tau$) + jets backgrounds

(normalized using the theoretical cross section)

$\sigma_{t\bar{t}}$ Measurement in 2-Lepton

- Cross section is extracted simply by counting experiment \succ
 - ✓ Data well modeled by MC

Saleem, M (University of Oklahoma)

$\sigma_{t\bar{t}}$ Measurement in 2-Lepton

Cross section is extracted simply by counting experiment

$\sigma_{t\bar{t}}$ Combination (I+jets + dilepton)

Combine single lepton and di-lepton channels ATLAS-CONF-2011-108 +13 176±5(stat.) -10 (syst.)±7(lumi.)pb $\delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} = 8.3\%$ σ_tt σ_{*tī*} [pb] ✓ Stat. uncertainty Combined 176 $\pm \frac{16}{13}$ pb (3 %) - NLO QCD (pp) ▼ I+jets 186 ± 23 pb Approx. NNLO (pp) ✓ Systematic uncertainty (7.4 %) (35 pb⁻¹, Prelim.) ···· NLO QCD (pp) ▲ Dilepton 171 ± ¹⁹/₁₇ pb ✓ Luminosity uncertainty (4%) 10^{2} Approx. NNLO (pp) (0.70 fb⁻¹, Prelim, CDF Good agreement with SM D0 220 210 prediction 200 190 180 **164.6** +11.4 pb - 15.7 pb 10 170 160 150 140 $\delta\sigma_{t\bar{t}}$ = 9.6% $\sigma_{t\bar{t}}$ 130 7.2 6.8 2 3 5 6 4 8 √*s* [TeV]

Summary and Outlook

The era of top physics at the LHC has just started

✓ Cross section measured in ATLAS within 8.2% uncertainty with LHC pp collisions at \sqrt{s} = 7 TeV by combining results:

 \checkmark obtained with 35 pb⁻¹ lepton + jets channel

- ✓ With 0.70 fb⁻¹ dilepton channel
- ✓ Competitive measurements are emerging (<u>176pb with 8.2% precision</u>)

♦ compatible with theory error: 164.6 +11.4/-15.7 pb

- ✓ Focus future work in improving systematic uncertainties
- Top pair production cross section (lepton + jets) with 0.7 fb⁻¹ (in approval process)
- Anticipate ~3 fb⁻¹ by the end of year (2.04 fb⁻¹ already on tape) 2011: the year of top measurements at LHC and may be discoveries !!

More Results are available at the top public result page

Thank You

$Z^*/\gamma(\rightarrow ee/\mu\mu)$ + jet background ^{2 lepton}

- Count the Z^{*}/γ contribution in sideband region
 Where fraction of Z^{*}/γ is about 90%
- Extrapolate it to signal region

Saleem, M (University of Oklahoma)

Drell-Yan

Z*/

Object definition and Event Selection

Muon: $P_{T} > 20 \text{ GeV}$ $ \eta < 2.5$ Isolated muon track Tracker & muon chamber		Electron: Isolated EM calo object Matching to track $E_T > 20(25)$ GeV , $0 < \eta < 2.47$ Remove: 1.37 < $ \eta < 1.52$	 1-lepton channel ✓ Exactly 1 isolated lepton with (matched to single lepton trigger) ✓ electron: MET > 35 GeV ; m_T(W) > 25 GeV 				
Jet: Topological cluster Anti-K _T (R = 0.4) P _T > 25(20) GeV $ \eta < 2.5$	N t	Lepton Neutrino Missing E _T : Vector Sum of Calo Energy deposits Corrected for Identified objects	 ✓ muon: MET > 20 GeV ; MET+m_T(W) > 25 GeV ✓ At least 3 jets with p_T>25 GeV ✓ ≥ 1jet b-tagged (Jet Prob: 70% eff) 2-lepton channel(W/O b-tag) ✓ 2 oppositely charged (ee, μμ, eμ) at least one matched to trigger ✓ 2 or more jets with p_T >20 GeV ✓ MET > 60(40) GeV ; 				
Event cleaning: Good Run condition PV > 4 tracks Bad jet veto	B-taggi Displace (Track/j vertex c	i ng: ed tracks or secondary leptons et compatibility with primary or Secondary Vertex)	 M - M_z > 10 GeV ✓ eµ: H_T > 130(140) GeV ✓ Cosmic muon rejection ✓ ≥ 1 b-tagged (IP3DSV1: 80% eff.) 				
09 th Aug 2011 Saleem, M (University of Oklahoma) 23							

SYETEMATICS (lepton+jets - NO

Source	Relative cross-section uncertainty [%]	Background		
Object selection		uncertainties		
Lepton reconstruction, identification, trigger	-1.9 / +2.6			
Jet energy scale and reconstruction	-6.1 / +5.7			
Background rates and shape				
QCD normalisation	±3.9			
QCD shape	±3.4	G = sig bkg		
W+jets shape	±1.2			
Other backgrounds normalisation	±0.5			
Simulation				
Initial/final state radiation	-2.1 / +6.1			
Parton distribution functions	-3.0 / +2.8			
Parton shower and hadronisation	±3.3	Object		
Next-to-leading-order generator	±2.1	reconstruction.		
MC statistics	±1.8	signal		
Pile-up	±1.2	modeling		
Total systematic uncertainty	-10.2 / +11.6	Indenng		

Luminosity uncertainty 3.4%

$$σ_{t\bar{t}} = 171 \pm 17(\text{stat.})^{+20}(\text{syst.}) \pm 6(\text{lumi.}) \text{ pb}$$

-17
$$\frac{\delta \sigma_{t\bar{t}}}{\sigma_{t\bar{t}}} = 15\%$$

SYETEMATICS (dilepton NO BTAG)

	ee	$\mu\mu$	eµ	Combined
Uncertainty Source	$\Delta \sigma / \sigma$ [%]			
Data statistics	-9.3 / 9.8	-6.6/6.8	-4.1/4.2	-3.3/3.3
Luminosity	-4.0/4.7	-3.7/4.3	-4.3 / 4.7	-4.2/4.6
MC statistics	-4.2/4.9	-2.8 / 3.2	-1.9 / 2.1	-1.5 / 1.6
Lepton energy scale	0.0/0.9	0.0/0.5	-0.3 / 0.3	-0.4 / 0.0
Lepton energy resolution	0.0/0.6	-0.5 / 0.8	0.0/0.5	-0.4 / 0.3
Lepton indent. scale factor	-5.5 / 6.6	-1.2/2.7	-3.1/3.4	-2.6 / 2.7
Jet energy scale	-10.0 / 10.6	-3.8/7.6	-3.7 / 4.5	-5.9 / 5.3
Jet energy resolution	-0.6/0.8	-3.1/3.6	-0.6/0.7	-0.4 / 0.3
Jet reconstr. efficiency	0.0 / 0.0	0.0 / 0.0	0.0 / 0.0	0.0/0.0
Drell-Yan prediction	0.0 / 0.0	-0.4/0.4	0.0 / 0.0	0.0 / 0.0
Fake leptons	-1.6/1.6	-0.4/0.4	-3.2/3.2	-2.0 / 1.9
MC generator	-4.3 / 5.3	0.0/0.0	-2.9/3.2	-2.1 / 2.3
Parton shower	-4.7 / 5.8	-0.4 / 0.5	-2.9 / 3.2	-2.3 / 2.4
ISR	-7.1/0.6	-0.8 / 3.6	-0.5 / 2.4	-2.4 / 2.5
FSR	-13.6/0.6	-0.7/4.3	-2.4/0.5	-1.3/1.4
PDF	-2.4 / 2.8	-1.7 / 2.2	-2.4 / 2.7	-2.3 / 2.5
$E_{\rm T}^{\rm miss}$ reconstruction	-1.0/1.1	-0.8 / 1.7	0.0 / 0.0	-0.5 / 0.6
Pile-up	-0.6/1.3	-0.5 / 1.5	0.0/0.0	-0.5 / 0.5
Detector modeling	-0.6/1.1	-0.7 / 1.5	-0.7 / 1.2	-1.0 / 1.3
Theoretical cross-sections	-1.4/1.3	-1.7 / 1.8	-2.1 / 2.1	-1.9 / 1.9
All systematics	-20 /18	-7.3 /13	-9.2/11	-9.3 / 10
Stat + Syst	-22 / 20	-9.9/15	-10 / 12	-9.8/11

$$\sigma_{t\bar{t}} = \frac{N_{sig} - N_{bkg}}{\int Ldt \times \varepsilon_{sig}}$$

$$\delta\sigma_{t\bar{t}}/\sigma_{t\bar{t}} = 10\%$$

Saleem, M (University of Oklahoma)