CMS Computing: Performance and Outlook

CMS pousey unity treducty

Ken Bloom
DPF 2011
August 11, 2011

The problem

Proton- Proton 2835 bunch/beam

Protons/bunch 10¹¹

Beam energy 7 TeV (7x10²eV)

Luminosity 10³⁴ cm⁻² s⁻¹

Crossing rate 40 MHz

Collision rate ~10⁹ Hz

New physics rate ~ 0.00001 Hz

Event Selection: 1 in 10,000,000,000,000

The response

- Distributed computing model planned from the start
 - Variety of motivating factors (infrastructure, funding, leverage)
 - Challenges in making the distributed model work, but worth it

2010 Operations Highlights

- All workflows ran at the designated facilities from Day 1!
- To handled many different datasets/workflows:
 - ▶ 100 different datasets, 13.9B events, 674 TiB
- Data re-processed many times at TI
 - ▶ 19 re-recos of data, 17.2B output events, 2.4 PB
 - ▶ 4 MC re-reco passes, 8.3B output events, 2.9 PB
- MC production at T2 and T1:
 - > 3.6B events, 3.9 PB, maximum > 500M events/month
- Transfers throughout the system:
 - ▶ Kept up with data taking, analysis datasets to T2 within a day
 - Peak rates > 600 MB/s T0→T1, 1200 MB/s T1→T2 like those of original computing model
 - More T2→T2 transfers than originally envisioned

2010 Operations Highlights

- Successful migration of analysis to T2 sites:
 - Did not know for sure that grid could handle hundreds of users
 - ▶ 450 unique analysis users/week, I 50K analysis jobs per day
 - Both grew throughout the year
- > 75 physics papers on 2010 data submitted/accepted published with more in pipeline; computing was never a bottleneck
- All of this during rapidly changing experimental conditions!
- All wonderful, but LHC only delivered 45 pb⁻¹.
 - > Smaller than what the system was designed for
 - A good opportunity to shake down the system under relatively small load

2011 is different

- LHC has reached 2011 target luminosity in June
 - ▶ 16 interactions/event anticipated before September technical stop
 → more pileup
 - Could be even more after that....
- Event sizes expected to double from 2010 values
 - ▶ 0.8 MB/event for RECO format, 0.2 MB/event for AOD
 - Processing time expected to quadruple to 96 HS06 sec/event
- Trigger rate nominally 300 Hz, but a challenge to keep it there
- This information, plus experience with real LHC operations in 2010, was the basis for a very thorough modeling effort
- Result: CMS computing expected to be resource-limited in 2011 and 2012, even after squeezing a lot of efficiency out of operations

Planning highlights: TI

- TI's extremely busy when re-processing, less so otherwise
 - Make TI's primary site for MC production when not re-processing
- Keep fewer copies of data at TI
 - Originally envisioned seven copies of AOD at T1, now just two
 - Only one copy of RECO kept on tape
 - Encourage physicists to move from RECO to AOD
 - Need regular deletion campaigns to stay within resource envelope

Planning highlights: T2

- Move MC production to T1 when possible, but when T1 is reprocessing, T2 CPU is heavily used
- 90% of user analysis needs to move from RECO to AOD
- Currently keep four copies of each analysis dataset across all 50 T2's, but need to be prepared to cut back
- Under any conditions, T2 resources are heavily committed

2011 experience: data taking

- How well does real CMS life match up with the plan?
- LHC duty cycle lower than anticipated, but CMS trigger rate above 300 Hz.
 - Trigger rate includes overlap in primary datasets, planned to be 25%
- Recorded I.IB events, compared to I.3B in the planning
 - Small contingency gained
- Re-reconstruction of full 2011 data should be ~1 PB

Average Trigger Rate

2011 experience: event properties

- In general pileup has been lower than anticipated due to larger number of smaller proton bunches
- Processing time about as expected for min-bias, 20% more than planned for other datasets
- Event sizes are generally smaller, have been roughly constant over time so far
- But everything expected to get bigger/longer as beam currents increase later this year

Tier	Size	Expectation
Data RAW	200kB	390KB
Data RECO	500kB	530kB
Data AOD	I00kB	200KB
MC Reco	970kB	600kB
MCAOD	250kB	265kB

2011 experience: T0 activity

- 40% LHC livetime in early June led to saturation of T0
- But could not fully use CPU:
 - Switch to 64-bit and new ROOT gives large memory footprint
 - Working to reduce exe size, take advantage of whole-node scheduling for shared readonly memory across multiple reconstruction jobs
- However, keeping up well enough with incoming data

2011 experience: TI activity

- Did full re-reco pass of 2010 data in April and all available 2011 data in May
 - Consistent with planning
 - Might not do full re-reco again until end of 2011 LHC run
- 2.8 billion MC events produced in 2011
 - Latest simulation includes out-of-time pileup
 - Had planned on 0.22B/ month, in fact capable of much more

TI technology improvements

- Workflow management system for data re-processing was designed for MC production
 - OK if you lose some MC events, can always make more
 - Not OK to be losing data events!
- New WMAgent system is much more robust
 - State machine rather than messaging system
 - ▶ 100% accountability for all events processed
 - Current version of software uses more memory than before, jobs are running longer, more failed jobs
 - But WMAgent can re-do failed jobs straightforwardly
 - Has also allowed for more efficient MC production
- Whole-node scheduling at T1's will also bring operational efficiencies, aim for 50% of resources used this way by end of year

2011 experience: T2 activity

- ▶ 30K cores for analysis, continually
 - More MC is moving to TI
- ~250K analysis jobs/day
 - More than original computing model
- Still, many jobs pending....

2011 experience: T2 activity

User community steadily growing, with a significant fraction of the entire collaboration (800 unique users/month) making use of grid resources for analysis

Analysis dataset usage

- Now have improved ability to track dataset usage
 - Users are in fact making necessary transition from RECO to AOD

- Some other experiment previously had these tracking tools
- Will now help us manage data distribution and more

Analysis technology improvements

- The CMS Remote Analysis Builder (CRAB) that analysts use to submit grid jobs will have a significant revision
 - Install WMAgent underneath to take advantage of its features
 - User interface will also change, requiring some user re-education
- Greater use of pilot jobs (glide-ins) for analysis
 - Could allow for a prioritization of user jobs across entire distributed system, not just at individual sites
 - Also potential for balancing usage across sites

Any data, anytime, anywhere

- Key limitation of computing model: CPU and storage co-located
 - Must place the data where the processing resources are
 - Difficult to optimize, need to guess analyst preferences
- But WAN is more reliable than anticipated in the MONARC days
- And CMS has optimized reading data files over the network
- Forget co-location and think big -- what if your could analyze data in one place with a CPU that's some other place?
 - Data placement hardly matters anymore
 - Users insulated from storage problems at sites: if a file is corrupt at one site, failover to network and access elsewhere transparently
 - Enable users who don't have large storage systems: small clusters can still have access to any data in the world, "diskless T3"
 - Access experiment data using cloud resources?

Any data, anytime, anywhere

- Prototype systems for this have already been deployed
 - Key element: redirectors that allow jobs to find data at remote sites
 - Fallback to WAN access already enabled at UST2 sites
 - Need to test/operate at scale, develop monitoring/accounting/ throttling systems

In related work, exploring how to migrate jobs between sites to optimize use of processing resources

Resource limitations

- The actual use of CMS computing resources is largely in line with the model that was created based on 2010 experience
 - Some parameters higher or lower, within about 20%, but variances have tended to compensate each other
- The model predicts that CMS will be limited by its computing resources during this year. Some of this is being seen:
 - Some analyses slowed by wait for MC samples
 - Significant demand for processing resources at T2
- If CERN runs LHC at very high luminosity, could get worse
 - But mini-Chamonix workshop says it will be gradual....
- Physicists will need to adapt to this new environment
- Good news: the resource limitations reflect the fact that LHC datasets are growing rapidly and provide the opportunity for new physics discovery

Outlook

- 2010 was an extremely good year for CMS computing
 - Computing was a strategic asset for producing physics results
 - Perspective: scales that were bleeding edge a few years ago are now every-day operations
- Strong performance has continued in 2011, but CMS has now entered an era of resource constraints
- But continuing technology developments are giving some operational breathing room
- Some of these developments have the potential to change the paradigm of computing at the LHC, and of data-intensive, high-throughput computing in general.