Performance of the CMS Electromagnetic Calorimeter

And the Challenge of the Calibration

Marco Grassi On behalf of the CMS ECAL Group

Physics with High Energy Photons

Low mass Higgs decays into b, τ, γ

 γ background well known

Relevant when looking for a small bump

SM Higgs: narrow resonance at low mass

Photon energy resolution drives discovery capability

The Compact Muon Solenoid at the Large Hadron Collider

Large Hadron Collider (LHC)

- ✤ Proton-proton collisions at \sqrt{s} =7 TeV
- Achieved Luminosity >2 \cdot 10³³ cm⁻² s⁻¹ (1380 bunches)
- More than 1 fb⁻¹ data delivered

Compact Muon Solenoid (CMS) Experiment

The Electromagnetic Calorimeter (ECAL)

ECAL Photodetectors

~4.5 photoelectrons/MeV @ 18 °C both in APD and VPT

$$E_{e,\gamma} = F_{e,\gamma}(\eta) G(GeV/ADC) \sum_{i} S_i(T,t) \times c_i \times A_i$$

$$(3) \qquad (2) \qquad (1)$$

- 1) A_i : Measured Amplitude in each channel (ADC counts)
- 2) C_i: Inter-Calibration Constants
- 3) S_i(T,t): Corrections for Transparency Loss (T= crystal transparency, t = time)
- 4) G: ECAL Energy Scale: ADC to GeV Conversion Factor
- 5) $F(\eta)$: Object Dependent Correction Factor \rightarrow Factorises Geometry and Material Effects

 $E_{e,\gamma} = F_{e,\gamma}(\eta) \ G(GeV/ADC) \sum S_i(T,t) \times c_i \times A_i$

Calibration Strategies:

- - Fast method. Calibration precision limited to ~1.4%
- * π^{0} calibration: photon pairs selected as $\pi^{0} \rightarrow \gamma \gamma$ candidates
 - High statistics available (dedicated data stream in data acquisition flow)
 - Allows both crystal inter-calibration and absolute scale calibration
- ◆ Isolated electrons from W→ev and Z → e^+e^- : compare the energy measured in ECAL to the track momentum
 - Several fb⁻¹ needed to perform single crystal inter-calibration: integrated luminosity accumulated is not yet sufficient
- ★ **Di-electron resonances** such as $J/\psi \rightarrow e^+e^-$ and $Z \rightarrow e^+e^-$: standard candles to define the ECAL energy scale.
 - * Larger data sample is needed. So far Z used to compute only global scale

Inter-Calibration Results

- Inter-Calibration precision combining all the methods
- ★ Barrel: $|η| \sim 1$ rapid increase of material budget in front of ECAL
- ★ Endcap: ($|\eta| < 1.6$) U ($|\eta| > 2.5$) No Preshower Coverage

Crystal Radiation Damage

ECAL crystals have to withstand huge radiation levels

Radiation dose (in Gy) absorbed by ECAL. Corresponding integrated luminosity: 500 fb⁻¹

- ✤ Radiation → Wavelength-dependent loss of light transmission (w/o changes in scintillation)
- Crystal Transparency *drops* within a run by a few percent and *recovers* in the inter-fill periods

APD: Avalanche Photodiode (EB)VPT: Vacuum Phototriode (EE)PN: Reference diode

Inject fixed amount of light (laser) to monitor transparency loss
 Blue Laser: check transparency at scintillation wavelength
 I-Red Laser: check response stability (blind to color centers)

Correction for Crystal Transparency Loss: Results

 $E_{e,\gamma} = F_{e,\gamma}(\eta) \underbrace{G(GeV/ADC)}_{i} \sum_{i} S_i(T,t) \times c_i \times A_i$

Energy Scale Using $Z \rightarrow e^+e^-$ Decay

Energy scale measured at **test beam** for EB and EE separately

Goal: equalizing energy sum of 5x5 crystal matrix to the electron beam energy

In-situ determination: reconstructing di-electron invariant mass of Z

Requiring electrons emitting very low Bremsstrahlung

Energy Resolution Using Z Width

- Fit to the Z shape using convolution of Breit-Wigner and Crystal-Ball (CB)
- * Δm_{CB} : difference between CB mean and true Z mass. σ_{CB} : width of CB function
- Energy scale of data distribution scaled to match the mean of the MC distribution

Resolution measured on data matches MC expectation (σ_{CB} ~1GeV for non-showering e[±])

Outcome of ECAL Performance: $H \rightarrow \gamma \gamma$ Results

- Search for $H \rightarrow \gamma \gamma$ performed with 1.09 fb⁻¹ (CMS PAS HIG-11-010)
- Excluded x2 ÷ x6 Standard Model Cross Section in 110 GeV < m(H) < 135 GeV
- \checkmark Observed limit within 2σ from expected value

- ECAL is facing a big challenge to keep energy resolution below 1% at E(γ)~100 GeV with increasing machine luminosity
- Inter-calibration, laser corrections and absolute scale proved to be well tuned to achieve design parameters during 2010 (and begin of 2011) data taking
- $H \rightarrow \gamma \gamma$ is the main Physics channel profiting by ECAL performance, and it is now **reaching the sensitivity to discover/exclude** Standard Model Higgs
- Inter-calibration and laser corrections have to keep improving to fully exploit ECAL potential and increase Higgs discovery reach