Performance of the CMS Electromagnetic Calorimeter

And the Challenge of the Calibration

Marco Grassi
On behalf of the CMS ECAL Group
Physics with High Energy Photons

Low mass Higgs decays into b, τ, γ
$
\gamma$ background well known
Relevant when looking for a small bump

SM Higgs: narrow resonance at low mass
Photon energy resolution drives discovery capability
The Compact Muon Solenoid at the Large Hadron Collider

Large Hadron Collider (LHC)
- Proton-proton collisions at $\sqrt{s} = 7$ TeV
- Achieved Luminosity $>2 \cdot 10^{33}$ cm$^{-2}$ s$^{-1}$ (1380 bunches)
- More than 1 fb$^{-1}$ data delivered

Compact Muon Solenoid (CMS) Experiment
The Electromagnetic Calorimeter (ECAL)

ECAL Features

- Homogeneous Calorimeter (>75000 PbWO₄ crystals)
- High density (8.3 g/cm³),
- Short Radiation Length (0.89 cm)
- Small Moliere Radius (2.2 cm)

Compact
Fine Granularity

Barrel
Preshower
Endcap

η=0

η=3

η=∞

pseudorapidity
ECAL Photodetectors

Barrel:
Avalanche PhotoDiodes (APD)
- two 5x5 mm² sensors
- high QE: ~75%
- Temp. Sensitivity -2.4%/°C

Endcaps:
Vacuum PhotoTriodes (VPT)
- 280 mm² sensor
- QE: ~20%
- More radiation tolerant than APDs

~4.5 photoelectrons/MeV @ 18 °C both in APD and VPT
Energy Measurement of Electromagnetic Objects

\[E_{e,\gamma} = F_{e,\gamma}(\eta) \ G(\text{GeV}/\text{ADC}) \sum_i S_i(T, t) \times c_i \times A_i \]

1) \(A_i \): Measured Amplitude in each channel (ADC counts)
2) \(C_i \): Inter-Calibration Constants
3) \(S_i(T, t) \): Corrections for Transparency Loss (\(T = \) crystal transparency, \(t = \) time)
4) \(G \): ECAL Energy Scale: ADC to GeV Conversion Factor
5) \(F(\eta) \): Object Dependent Correction Factor \(\rightarrow \) Factorises Geometry and Material Effects

Design Energy Resolution

\[
\frac{\sigma(E)}{E} = \frac{2.8\%}{\sqrt{E(\text{GeV})}} \oplus \frac{12\%}{E(\text{GeV})} \oplus 0.3\%
\]

- stochastic
- noise
- constant
\[E_{e,\gamma} = F_{e,\gamma}(\eta) \ G(GeV/ADC) \ \sum_i S_i(T, t) \times C_i \times A_i \]
Inter-Calibration Methods

Calibration Strategies:

❖ \(\phi\)-symmetry calibration: exploit the energy flow invariance around the beam axis
 ❖ Fast method. Calibration precision limited to \(\sim 1.4\%\)

❖ \(\pi^0\) calibration: photon pairs selected as \(\pi^0 \rightarrow \gamma\gamma\) candidates
 ❖ High statistics available (dedicated data stream in data acquisition flow)
 ❖ Allows both crystal inter-calibration and absolute scale calibration

❖ Isolated electrons from \(W\rightarrow e^+\nu\) and \(Z \rightarrow e^+e^-\): compare the energy measured in ECAL to
 the track momentum
 ❖ Several \(fb^{-1}\) needed to perform single crystal inter-calibration:
 integrated luminosity accumulated is not yet sufficient

❖ Di-electron resonances such as \(J/\psi \rightarrow e^+e^-\) and \(Z \rightarrow e^+e^-\): standard candles to define
 the ECAL energy scale.
 ❖ Larger data sample is needed. So far \(Z\) used to compute only global scale
Inter-Calibration Results

- Inter-Calibration precision combining all the methods
- Barrel: $|\eta| \sim 1$ rapid increase of material budget in front of ECAL
- Endcap: $(|\eta| < 1.6) \cup (|\eta| > 2.5)$ No Preshower Coverage
\[E_{e,\gamma} = F_{e,\gamma}(\eta) \ G(\text{GeV}/\text{ADC}) \sum_i S_i(T, t) \times c_i \times A_i \]
Crystal Radiation Damage

- ECAL crystals have to withstand huge radiation levels

Radiation dose (in Gy) absorbed by ECAL. Corresponding integrated luminosity: 500 fb$^{-1}$

- Radiation \rightarrow Wavelength-dependent loss of light transmission (w/o changes in scintillation)

- Crystal Transparency *drops* within a run by a few percent and *recovers* in the inter-fill periods
Correction for Crystal Transparency Loss: Method

- Inject fixed amount of light (laser) to monitor transparency loss
- **Blue Laser**: check transparency at scintillation wavelength
- **I-Red Laser**: check response stability (blind to color centers)
- Transparency Loss of ~1% in EB (~3% in EE) during 2010

APD: Avalanche Photodiode (EB)
VPT: Vacuum Phototriode (EE)
PN: Reference diode

Strongly correlated with LHC instantaneous luminosity

![Graph showing normalized APD/PN over time from March 2010 to December 2010]
Correction for Crystal Transparency Loss: Results

- Normalized π^0 invariant mass history from di-photon events
- Data before/after laser energy corrections
- In Barrel 1% drop if not accounting for crystal transparency loss
- Energy/Momentum Ratio for high energy electrons
- Electrons selected from $W\to e\nu$ decays
- π^0 and e histories are not directly comparable (different rapidity reconstruction efficiency)
\[E_{e,\gamma} = F_{e,\gamma}(\eta) \cdot G(\text{GeV/ADC}) \sum_i S_i(T, t) \times c_i \times A_i \]
Energy Scale Using $Z \rightarrow e^+e^-$ Decay

Energy scale measured at **test beam** for EB and EE separately

- Goal: equalizing energy sum of 5x5 crystal matrix to the electron beam energy

In-situ determination: reconstructing di-electron invariant mass of Z

- Requiring electrons emitting very low Bremsstrahlung

Method: matching reconstructed invariant mass peak position in data with MonteCarlo position (G-independent)

BARREL

No scale adjustment

0.6% syst uncert

ENDCAP

1% adjustment needed

1.5% syst uncert
Energy Resolution Using Z Width

- Fit to the Z shape using convolution of Breit-Wigner and Crystal-Ball (CB)
- Δm_{CB}: difference between CB mean and true Z mass. σ_{CB}: width of CB function
- Energy scale of data distribution scaled to match the mean of the MC distribution

Resolution measured on data matches MC expectation ($\sigma_{CB} \sim 1$ GeV for non-showering e^{\pm})
Outcome of ECAL Performance: $H \rightarrow \gamma \gamma$ Results

- Search for $H \rightarrow \gamma \gamma$ performed with 1.09 fb^{-1} (CMS PAS HIG-11-010)
- Excluded $x2 \div x6$ Standard Model Cross Section in $110 \text{ GeV} < m(H) < 135 \text{ GeV}$
- Observed limit within 2σ from expected value

![Graph showing CMS preliminary results for $\sigma \times BR(H \rightarrow \gamma \gamma)$ vs. m_H (GeV/c^2) with observed CLs limit, observed Bayesian limit, median expected CLs limit, and expected CLs limits at $\pm 1\sigma$ and $\pm 2\sigma$. Almost there... annotation.]
Conclusions

- ECAL is facing a big challenge to keep energy resolution below 1% at $E(\gamma) \sim 100$ GeV with increasing machine luminosity.

- Inter-calibration, laser corrections and absolute scale proved to be well tuned to achieve design parameters during 2010 (and begin of 2011) data taking.

- $H \rightarrow \gamma \gamma$ is the main Physics channel profiting by ECAL performance, and it is now reaching the sensitivity to discover/exclude Standard Model Higgs.

- Inter-calibration and laser corrections have to keep improving to fully exploit ECAL potential and increase Higgs discovery reach.