Short Baseline Neutrino Oscillations

Žarko Pavlović

Los Alamos National Laboratory

DPF, Aug 12 2011

Standard Model & Neutrino Oscillations

- 3 neutrinos
 - Initially assumed massless
- Mixing matrix:

 $\begin{pmatrix} \boldsymbol{v}_{e} \\ \boldsymbol{v}_{\mu} \\ \boldsymbol{v}_{\tau} \end{pmatrix} = \begin{pmatrix} \boldsymbol{U}_{e1} \boldsymbol{U}_{e2} \boldsymbol{U}_{e3} \\ \boldsymbol{U}_{\mu 1} \boldsymbol{U}_{\mu 2} \boldsymbol{U}_{\mu 3} \\ \boldsymbol{U}_{\tau 1} \boldsymbol{U}_{\tau 2} \boldsymbol{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \boldsymbol{v}_{3} \end{pmatrix}$

• Oscillation Probability:

$$P_{\alpha\beta} = |\langle \nu_{\beta} | \nu_{\alpha}(t) \rangle|^{2} = \delta_{\alpha\beta} - 4 \sum_{i < j}^{n} \operatorname{Re}[U_{\alpha i} U_{\beta i}^{*} U_{\alpha j}^{*} U_{\beta j}] \sin^{2} X_{ij}$$
$$+ 2 \sum_{i < j}^{n} \operatorname{Im}[U_{\alpha i} U_{\beta i}^{*} U_{\alpha j}^{*} U_{\beta j}] \sin 2X_{ij}$$

$$X_{ij} = \frac{(m_i^2 - m_j^2)L}{4E} = 1.27 \frac{\Delta m_{ij}^2}{\text{eV}^2} \frac{L/E}{\text{m/MeV}}$$

Neutrino Oscillations

- Lot of experimental evidence
- L/E dependence
- Precise measurement of atmospheric and solar Δm^2

LSND

- Evidence for oscillations at higher ∆m² than atmospheric and solar
- Stopped pion beam $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\mapsto e^+ + \overline{\nu}_{\mu} + \nu_{e}$
- Excess of $\overline{\nu}_{_{e}}$ in $\overline{\nu}_{_{\mu}}$ beam
- v_e signature: Cherenkov light from e⁺ with delayed n-capture
- Excess= $87.9 \pm 22.4 \pm 6 (3.8\sigma)$

LSND signal

 $\Delta m_{21}^2 \equiv m_2^2 - m_1^2$

Assuming two neutrino oscillations

$$P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = \sin^{2}(2\theta) \sin^{2}\left(\frac{1.27 \ L \ \Delta m^{2}}{E}\right)$$
$$= 0.245 \pm 0.067 \pm 0.045 \ \%$$

 Can't reconcile LSND result with atmospheric and solar neutrino using only 3 Standard Model neutrinos – only two independent mass splitings

$$\sim SEE \qquad \Delta m_{32}^2 \equiv m_3^2 - m_2^2 \qquad V_2 \qquad V_1$$

Sterile neutrinos

- 3 active neutrinos + 1 sterile neutrino
- Sterile neutrino has no Standard Model interactions
- Active neutrinos can oscillate into sterile
- 3 parameters relevant for short baseline exp.: Δm_{41}^2 , $|U_{e4}|$ and $|U_{\mu4}|$
- $P(\nu_{\mu} \rightarrow \nu_{e}) = 4 |U_{e4}|^{2} |U_{\mu4}|^{2} \sin^{2}(1.27 \Delta m_{41}^{2} L/E)$ $P(\nu_{e} \rightarrow \nu_{e}) = 1 4 |U_{e4}|^{2} (1 |U_{e4}|^{2}) \sin^{2}(1.27 \Delta m_{41}^{2} L/E)$ $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 4 |U_{\mu4}|^{2} (1 |U_{\mu4}|^{2}) \sin^{2}(1.27 \Delta m_{41}^{2} L/E)$

More sterile neutrinos

- Next minimal extension 3+2 models
- Favored by fits to world data
- Model allows CP violation

•
$$\nu_{\mu} \rightarrow \nu_{e} \neq \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$$

MiniBooNE experiment

- Similar L/E as LSND
 - MiniBooNE ~500m/~500MeV
 - LSND ~30m/~30MeV
- Horn focused neutrino beam (p+Be)
 - Horn polarity \rightarrow neutrino or anti-neutrino mode
- 800t mineral oil Cherenkov detector

Predicted neutrino flux

• Anti-neutrino mode

4.5 5 E. (GeV)

Neutrino mode

Phys. Rev. D79, 072002 (2009)

MiniBooNE neutrino result

- 6.5e20 Protons On Target (POT)
- No excess of events in fit region (E>475 MeV)
- Disfavors LSND 2 v oscillation explanation for neutrinos (assuming no CP or CPT violation)

Phys. Rev. Lett. 98, 231801 (2007) 10

MiniBooNE neutrino result

Excess of events observed at low energy: $128.8 \pm 20.4 \pm 38.3 (3.0\sigma)$

Shape not consistent with 2 v oscillations

Magnitude consistent with LSND

Anomaly Mediated Neutrino-Photon Interactions at Finite Baryon Density: Jeffrey A. Harvey, Christopher T. Hill, & Richard J. Hill, arXiv:0708.1281

CP-Violation 3+2 Model: Maltoni & Schwetz, arXiv:0705.0107; T. Goldman, G. J. Stephenson Jr., B. H. J. McKellar, Phys. Rev. D75 (2007) 091301.

Extra Dimensions 3+1 Model: Pas, Pakvasa, & Weiler, Phys. Rev. D72 (2005) 095017

Lorentz Violation: Katori, Kostelecky, & Tayloe, Phys. Rev. D74 (2006) 105009

CPT Violation 3+1 Model: Barger, Marfatia, & Whisnant, Phys. Lett. B576 (2003) 303

New Gauge Boson with Sterile Neutrinos: Ann E. Nelson & Jonathan Walsh, arXiv:0711.1363

New \overline{v}_{e} appearance results

	200-475MeV	475-1250MeV
Data	189	168
MC	150.4±18.5	151.7±19.4
Excess	38.6±18.5	16.3±19.4
LSND Best Fit	11.4	33.3
Expectation from v low E excess	17	0
LSND+Low E	28.4	33.3

- Updated analysis with 8.58E20
 POT ~50% more data
- Nearly same analysis as before
 - New constraint on nue flux from K+ decays using SciBooNE + fit to K+ production global data (1105.2871, accepted by Phys. Rev. D)
 - Compared to last analysis:
 excess of events in 200-475
 MeV is more significant
 excess somewhat reduced in 475-1250MeV region, but still consistent with LSND

Fit E>475MeV

- 8.58E20 POT
- E>475 is neutrino mode fit region
- Oscillations favored over background only hypotheses at 91.4% CL
- Probability:

P(null)=14.9%

E>200MeV

- E<475MeV:
 - Larger background & systematics

PRELIMINARY

JULY 2011

0.6

0.8

1.0

- Oscillations favored over background only hypotheses at 97.6% CL (model dependent)
- No assumption made about low energy excess

Data (stat err.) v**。from** μ⁺

Constr. Syst. Error

v。from K^{+/-}

v from K⁰ π⁰ misid

 $\Delta \rightarrow N\gamma$

dirt

other

Best Fit

1.2

1.4

p(null)=10.1% p(BF) =50.7%

1.0

0.8

0.6

0.4

0.2

0.0 ⊾ 0.2

0.4

Events/MeV

E>200MeV

- E<475MeV:
 - Larger background & systematics
- Oscillations favored over background only hypotheses at 94.2% CL (model dependent)
- Subtract low energy excess assuming neutrinos anti-neutrino mode contribute to the excess (17 events)
- p(null)=28.3% p(BF) =76.5%

 10^{2}

LSND vs MB direct comparison

16

Reactor antineutrino anomaly

- Recent re-evaluation of reactor fluxes \rightarrow +3%
- Observed/predicted event rate=0.943+-0.023
- Deviation from unity at 98.6% CL

Phys.Rev.D 83, 073006 (2011)

Gallium Anomaly

- GALLEX and SAGE calibration runs with intense MCi sources (v)
- Neutrinos detected through radiochemical counting of Ge nuclei: ${}^{71}Ga+v_{e}-{}^{71}Ge+e^{-}$
 - 2 runs at GALLEX with ⁵¹Cr source (~750keV)
 - 1 run at SAGE with ⁵¹Cr source
 - 1 run at SAGE with ³⁷Ar source (~810 keV)
- All runs observed deficit of neutrino interactions compared to the expected activity
 - R=meas/pred = 0.86+-0.06

Phys.Rev.D 83, 073006 (2011)

Sterile neutrinos?

- Reactor data and GALLEX/SAGE
- Data consistent with sterile neutrino oscillations
- Null disfavored at 99.8%
- High Δm² excluded by limits on nue disappearance using KARMEN and LSND (arxiv:1106.5552)

Phys.Rev.D 83, 073006 (2011)

Cosmology

- Data consistent with extra sterile neutrinos
- N_s = number of thermalized sterile neutrinos

Phys.Rev.Lett. 105, 181301 (2010)

3+N models require large $\overline{\nu}_{\!_{\mu}}$ disappearance

• In general:

$$P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) < \frac{1}{4} P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{x}) P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{x})$$

• From reactor experiments:

 $P(\bar{v}_e \rightarrow \bar{v}_x) < 8\%$

• From LSND/MiniBooNE:

 $P(\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}) \sim 0.25\%$

• Therefore:

$$P(\bar{\nu_{\mu}} \rightarrow \bar{\nu_{x}}) > 10\%$$

*Assuming light neutrinos are mostly active and sterile neutrinos are heavy

v_{μ} disappearance

- Provides a constraint on $\nu_{_{e}}$ appearance
- Combined SciBooNE-MiniBooNE analysis in neutrino mode
- MiniBooNE only in antineutrino mode

MINOS ν_{μ} vs $\bar{\nu}_{\mu}$

• Hint of NSI or CPT violation?

Phys.Rev.Lett.107:021801,2011

Future outlook

- MiniBooNE more antineutrino data, approved to run through spring 2012
- MicroBooNE resolve the low energy excess
- MINOS+ sterile neutrinos, NSI, ...
- BooNE
- Stopped pion source exp. (OscSNS,...)
- Icarus at CERN-PS

Conclusion

- MiniBooNE anti neutrino data consistent with LSND and $\overline{\nu}_{\mu}$ -> $\overline{\nu}_{e}$ oscillations at Δm^{2} ~1eV²
- Few other hints of sterile neutrinos reactor anomaly, gallium anomaly, cosmology
- Very active topic:
 - Workshop on Sterile Neutrinos and on the Reactor (anti)-Neutrino Anomaly, TUM, Garching, Feb 8 2011
 - Beyond3nu, Gran Saso, May 3-4 2011
 - Short Baseline Neutrino Workshop, Fermilab, May 12-14 2011
 - Sterile Neutrinos At The Crossroads, Virginia Tech, Sep 26-28 2011

Backup slides

2+2

- Within 2+2 model Sterile neutrino participates in either solar or atmospheric neutrino oscillations (or both)
- Experiments measuring solar and atmospheric dm2 disfavor oscillations to pure sterile neutrinos

=> 2+2 is strongly disfavored

Future sensitivity

- Potential exclusion of null point assuming best fit signal
- Combined analysis of $v_{_{e}}$ and $\overline{\nu}_{_{e}}$

BooNE

- MiniBooNE like detector at 200m
- Flux, cross section and optical model errors cancel in 200m/500m ratio analysis
- Present neutrino low energy excess is 6 sigma statistical;
 3 sigma when include systematics
- Study L/E dependence
- Gain statistics quickly, already have far detector data

BooNE

- Better sensitivity to v_{μ} (\overline{v}_{μ}) disappearance
- Look for CPT violation $(v_{\mu} \rightarrow v_{\mu} \neq \overline{v}_{\mu} \rightarrow \overline{v}_{\mu})$

OscSNS

- Spallation neutron source at ORNL
- 1GeV protons on Hg target (1.4MW)
- Free source of neutrinos
- Well understood flux of neutrinos

OscSNS

• \bar{v}_{e} appearance (left) and v_{μ} disappearance sensitivity (right) for 1 year of running

LSND $\bar{\nu_{e}}$ Background Estimates

Estimate	$\overline{\nu_{e}}/\overline{\nu_{\mu}}$	v_{e}^{-} Bkgd	LSND Excess
LSND Paper	0.086%	19.5+-3.9	87.9+-22.4+-6.0
Zhemchugov Poster	0.071%	16.1+-3.2	91.3+-22.4+-5.6
Dydak Seminar	0.116%	26.3+-5.3	81.1+-22.4+-7.0

All $\overline{v_e}$ background estimates assume a 20% error. Note that the $\overline{v_e}/\overline{v_{\mu}}$ ratio determines the background!

LSND Paper: A. Aguilar et al., Phys. Rev. D 64, 112007 (2001); (uses MCNP)

Zhemchugov Poster: **FLUKA** $\overline{v_e}/\overline{v_{\mu}}$ ratio presented at the ICHEP 2010 Conference, Paris

Dydak Seminar: **FLUKA** $\overline{v}_{e}/\overline{v}_{u}$ ratio presented at FNAL on January 14, 2011

Although the analysis of Zhemchugov, Dydak et al. is not fully understood or endorsed, their $\overline{v_e}/\overline{v_{\mu}}$ ratios agree reasonably well with the published LSND results.

Note that LSND measures the correct rate of $\overline{v_{\mu}} p \rightarrow \mu^+ n$ interactions, which confirms the π^- production and background estimates. Note also, that FLUKA & GEANT4 overestimate π^- production at ~800 MeV. Note that N_{gs} events are included in the LSND background estimate.

GEANT4 Overestimates π - Production!

$v_e C \rightarrow e^- N_{gs}$ Events Do Not Simulate $\overline{v}_e p \rightarrow e^+ n$ Events!

For N_{gs} β decay to be considered a 2.2 MeV γ : $\Delta r < 2m$, $\Delta t < 500 \mu$ s, 19 $< N_{hits} < 51$

The number of N_{gs} events with a β that satisfies this initial requirement is approximately: (600)(1)(1/31.8)(0.05) ~ 1 event.

The number of $N_{\alpha s}$ events with $R_{\gamma} > 10 \sim 0.1$ events.

This background is included in the LSND background estimate.