Dihadron Correlations in PbPb Collisions at 2.76 TeV with CMS

Yuting Bai

for the CMS Collaboration

Dihadron Correlations

- Features found in AA collisions at RHIC:
 - Broadened away side
 - Disappearance of back-to-back correlations
 - Near-side ridge
- Explanations of ridge include:
 - Connections to jet quenching
 - Higher order flow components ($v_n \mid n>2$)
- LHC and CMS provide:
 - Higher density system
 - Unprecedented pseudorapidity and p_T reach

CMS experiment

Dihadron correlations in CMS

Signal distribution:

$$S(\Delta \eta, \Delta \varphi) = \frac{1}{N_{trig}} \frac{d^2 N^{same}}{d\Delta \eta d\Delta \varphi}$$

Particle 1: trigger

Particle 2: associated

Event 1

Background distribution:

$$B(\Delta \eta, \Delta \varphi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N^{\text{mix}}}{d\Delta \eta d\Delta \varphi}$$

Event 2

$$\Delta \eta = \eta^{assoc} - \eta^{trig}$$
$$\Delta \phi = \phi^{assoc} - \phi^{trig}$$

Associated hadron yield per trigger:

$$\frac{1}{N_{\text{trig}}} \frac{d^2 N^{\text{pair}}}{d\Delta \eta d\Delta \phi} = B(0,0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$$

Heavy-ion "ridge" at LHC

Ridge-like structure extends out to $|\Delta \eta| = 4$ Associated hadron yield per trigger:

$$\frac{1}{N_{\text{trig}}} \frac{d^2 N^{\text{pair}}}{d\Delta \eta d\Delta \phi} = B(0,0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$$

1D Correlation - Central 0-5% Ridge Region

Ridge in central PbPb collisions tends to diminish at high p_T

Centrality dependence in PbPb

1D Correlation – Ridge Region

v₂ Subtracted Ridge Region

Uncertainty from v_2

 $4 < p_T^{trig} < 6$ $2 < p_T^{assoc} < 4$ $2 < |\Delta \eta| < 4$

1D Correlation – Jet Region

v₂ Subtracted Jet Region

Uncertainty from v_2

 $4 < p_T^{trig} < 6$ $2 < p_T^{assoc} < 4$ $0 < |\Delta \eta| < 1$

Comparison with RHIC

Qualitatively, similar trend in centrality to RHIC results

Ridge from higher-order flow harmonics

Long range rapidity correlations → early time dynamics

Initial condition fluctuations → higher order odd flow harmonics (e.g., triangle flow, v₃)

Fourier analysis of Δφ correlations

Fourier decomposition:
$$\frac{1}{N_{trig}} \frac{dN^{pair}}{d\Delta\phi} = \frac{N_{assoc}}{2\pi} (1 + 2\sum_{n=1} V_{n\Delta} \cos(n\Delta\phi))$$

Ridge structure exhausted by first 5 Fourier terms

Flow driven correlations:
$$V_{n\Lambda} = V_n^{\text{trig}} \times V_n^{\text{assoc}}$$

(factorization relation can be tested directly!)

Fourier analysis of Δφ correlations

Flow harmonics (v_n) from the ridge

If assume flow alone is responsible for the ridge and there is no away side jet contribution in the correlation,

$$V_{n\Delta}(p_T^{trig}, p_T^{assoc}) = v_n(p_T^{trig}) \times v_n(p_T^{assoc})$$

flow coefficients v_n could be extracted:

$$v_{n}^{trig} = \frac{V_{n\Delta}(p_{T}^{trig}, p_{T}^{assoc})}{\sqrt{V_{n\Delta}(p_{T}^{assoc}, p_{T}^{assoc})}}$$

Keep low p_T^{assoc} (1 < p_T^{assoc} < 2 GeV/c) to minimize non-flow effects

v₂ from long-range correlations

v₃ from long-range correlations

YutingBai PDF2011 18

Flow coefficients (v_n) vs centrality

Centrality dependence of v_n follows expectation from hydrodynamics (initial geometry and its fluctuation)

Powerful constrains on the initial condition and viscous property

Further systematic checks of $V_{n\Delta}(p_T^{trig}, p_T^{assoc})$ factorization

- ➤ Disentangle flow and non-flow correlations
- Study jet-medium interactions (after flow subtraction)

Summary

- Ridge-like structure extends out to $|\Delta\eta| < 4$ and tends to disappear with increasing p_T
- Standard v₂-subtracted ridge results are qualitatively consistent with RHIC
- Ridge can be described by higher order flow (v_n),
 which supports a picture of fluctuating initial condition
- Results of Fourier analysis of the ridge region are consistent with standard flow measurements

v₂-subtracted associated yield in PbPb

CMS PAS HIN-11-006

 $4 < p_T^{trig} < 6 \text{ GeV/c}$ $2 < p_T^{assoc} < 4 \text{ GeV/c}$

CMS Preliminary

Jet and Ridge Regions

v₄ from long-range correlations

v₅ from long-range correlations

CMS PAS HIN-11-006

25