PROJECT 8 USING RADIO FREQUENCIES TO MEASURE THE NEUTRINO MASS

Noah Oblath MIT

DPF Meeting Providence, RI August 12, 2011

Neutrino Mass

PROJECT B

Neutrino Mass

20.15

Tritium Beta Decay

... from which we detect the electron

PROJECT R

Beta decay allows a precise measurement of the absolute neutrino mass scale

Energy Spectrum

The shape is modified by the neutrino mass

COJIN CIN

Energy Spectrum

The shape is modified by the neutrino mass

EOJIN CONT

Energy Spectrum

The shape is modified by the neutrino mass

ROJACT

Beyond KATRIN

Limiting Factors

- Flux: Cannot increase source column density; can only scale up the area
- Resolution: Cannot reasonably scale up the size of the spectrometer

$$\Delta E = \frac{B_{\min}E}{B_{\max}}$$

OJRC-

A new technique is necessary to achieve the desired target and resolution

PROJECT B

Enclosed volume

- Enclosed volume
- Fill with tritium gas

PROJECT B

- Enclosed volume
- Fill with tritium gas
- Add a magnetic field

PROJECT 13

- Enclosed volume
- Fill with tritium gas
- Add a magnetic field

Decay electrons spiral around field lines

ROJECTP

- Enclosed volume
- Fill with tritium gas
- Add a magnetic field

Decay electrons spiral around field lines

EOJIC CITY

Add antennas to detect the cyclotron radiation

Cyclotron Radiation

 The frequency of the emitted radiation (ω) depends on the relativistic boost (γ and β dependence), and is independent of the pitch angle of the electron (θ)

$$\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{eB}{K + m_e} \qquad P_{\text{tot}} = \frac{1}{4\pi\epsilon_0} \frac{2q^2\omega_c^2}{3c} \frac{\beta_{\perp}^2}{1 - \beta^2}$$

• The radiation emitted can be collected to measure the electron energy in a non-destructive manner

PROJECT B

From B. Monreal and J. Formaggio, Phys. Rev. D80 051301 (2008)

Frequency Spectrum

• Low energy electrons dominate at higher frequencies

OJECT

 Rare, high energy electrons give a clean signature at the endpoint

Observed Frequencies

PROJECT 33

This effect is highly dependent on the antenna configuration

Observed Frequencies

PROJECT B

This effect is highly dependent on the antenna configuration

Magnetic Field

- Frequency ~ magnetic field strength
- At I T, the tritium endpoint falls around 27 GHz

COJRCO

- Power radiated: 10^{-15} W
 - * $18.6 \text{ keV} = 3 \times 10^{-15} \text{ J}$
 - Measurement time: $\sim 10^{-5}$ s

Is this even Possible?

With B = 1 T

- Power radiated $P_{\text{signal}} = 10^{-15} \text{ W}$
- Thermal noise power @ 60 K $P_{kT} = 5 \times 10^{-17} \text{ W}$

- **Energy resolution** $\Delta E = 1 \text{ eV}$
 - $\Delta E/E \sim \Delta f/f \sim 10^{-6}$ *
 - $\Delta f \approx 50 \text{ kHz}$ *

Simulated power spectrum

Complexities

Electron energy
is not constant

Complexities

 Electron energy is not constant

 B field may not be uniform

Prototype Experiment

- A prototype is being built at UW
- There are several questions to answer
 - I. Can we detect the signal?
 - 2. What is the resolution of the technique?
 - 3. Can we measure the ^{83m}Kr spectrum?

OJRCT

Antenna Options

Parallel-strip waveguide

PROJECT 13

Rectangular waveguide

Prototype Status

- Almost ready to test parallel-strip antenna
- ^{83m}Kr source plumbing is being put together
- Magnet, antenna, receiver chain, etc., are ready
- Rectangular waveguide is partially complete

- Project 8 is the first realistic prospect for a post-KATRIN neutrino mass experiment
- We will soon make the first attempts at singleelectron detection with a ^{83m}Kr source
- We will also investigate antenna design and potential energy resolution
- We are currently working on scalable designs for making neutrino mass measurements