Triggering on Long-lived Neutral Particles in ATLAS

Steve Alkire

University of Washington

Outline

- Motivating Long-lived Neutral Particles
- Signature Driven ATLAS Triggers for LLNP
- Understanding Backgrounds to these Triggers
- Looking forward

Motivation

The need for designated long-lived particle triggers and why Hidden Valley serves as a strong platform for their implementation.

The Need for Long-lived Triggers

Theoretical Motivations

- Many BSM theories include the possibility of the Higgs decay to long-lived neutral particles:
 - gauge-mediated SUSY extensions of the MSSM
 - MSSM with R-parity violation
 - inelastic dark matter
 - Hidden Valley

Experimental Motivations

- Prescale
 - Limited computing resources require significant sacrifice of events
 - ATLAS only activates many single jet triggers < 1/10000 events in 2011.
 - What we keep are mostly events with high p_T jets and high jet multiplicity.
- IP-Centric Objects
 - Most objects reconstructed by ATLAS assume that they come from the IP.
 - A muon in ATLAS requires the matching of ID track to MS track.

The Need for Long-lived Triggers

Choosing a Benchmark Model

- In order to serve the purpose of designing triggers for the detector we want one with:
 - Many models
 - Wide range of final states
 - Wide range of particle lifetimes
 - Various production mechanisms
- Hidden Valley
 - A hidden sector accessible through LHC energies.
 - Has no lifetime prediction—particles can be prompt or live long enough to travel into the detector volume.
 - Some particles may decay (slowly) back to SM particles.

M. Strassler and K. Zurek, Phys. Lett. B651 (2007) 374

Hidden Valley

The Benchmark Model for Long-lived Neutral Particle Trigger Design

- Benchmark model (Strassler, Zurek): $h \to 2\pi_v \to 2b2\bar{b}$
 - Long-lived π_v decays to b jets
 - $m_h = 140 \text{ GeV}$
 - $m_{\pi_v} = 40 \text{ GeV}$
 - π_v have long lifetime on detector scale
 - Source: ATL-PHYS-PUB-2009-082
 - Source: M. Strassler and K. Zurek, Phys. Lett. B651 (2007) 374

Hidden Valley

The Benchmark Model for Long-lived Neutral Particle Trigger Design

- π_v can decay anywhere within the ATLAS detector:
 - Inner Detector
 - EM Calorimeter
 - Hadronic Calorimeter
 - Muon System

Hidden Valley

The Benchmark Model for Long-lived Neutral Particle Trigger Design

- π_v can decay anywhere within the ATLAS detector:
 - Inner Detector
 - EM Calorimeter
 - Hadronic Calorimeter
 - Muon System

- In each case the decay is isolated from the IP
 - This forms the basis for our trigger design.

Hidden Valley Benchmark MC Simulation

Long-lived $\pi_{\!_{V}}$ Decay

- MC simulation: gg $h \to 2\pi_v \to 2b2\overline{b}$
 - $M_{\rm h} = 140 \; {\rm GeV/c^2}$
 - $M_{v\pi} = 40 \text{ GeV/c}^2$
 - Proper lifetime c $\tau = 1.5$ m.
- Fraction of π_v decaying in each region of the detector as a function of proper lifetime.
 - Proper lifetime chosen to give roughly equal number of decays in EM Calorimeter, Hadronic Calorimeter, and Muon System.
 - Largest fraction of π_v decay in the Inner Detector.

Hidden Valley Benchmark MC Simulation

Long-lived $\pi_{\!_{V}}$ Decay

- MC simulation: gg $h \to 2\pi_v \to 2b2\overline{b}$
 - $M_{\rm h} = 140 \; {\rm GeV/c^2}$
 - $M_{v\pi} = 40 \text{ GeV/c}^2$
 - Proper lifetime c $\tau = 1.5$ m.
- Distribution of β of π_{v} .
 - Chosen kinematics give π_v timing similar to minimum ionizing particles.
 - Detector inefficiency due to timing a secondary issue with range of values for which triggers have been designed.
 - $M_h = 120 \text{ to} 140 \text{ GeV}/c^2$
 - $M_{v\pi} = 20$ to 40 GeV/c²

The Triggers

3 triggers to cover a wide range of detector.

Steve Alkire

Trigger Flow in ATLAS

A quick overview of data rate reduction

ATLAS Trigger Hierarchy

Increased processing time allows increased quality of reconstructed objects.

- Level 1
 - Coarse Calorimeter and Muon Spectrometer granularity.
 - No Inner Detector tracking.
 - Identifies Regions of Interest (RoI).
- Level 2
 - Full detector granularity in RoIs only.
 - Full tracking in RoI and all tracks are required to connect to the Interaction Point (IP).
 - Only one muon per RoI is reconstructed.
- Event Filter
 - Objects reconstructed with entire detector data.
 - Better Jet E_T resolution.
 - Better muon p_T resolution.
 - Further offline-like cuts introduced to limit write out frequency to roughly 200 Hz.

Regions of Interest (Rol)

HV Triggers

Trackless Jet Trigger

• 0 ID L2 tracks in jet cone ($\eta \propto \phi < 0.2$) with $p_T > 1$ GeV/c.

Efficiency of triggers depend on proper lifetime of π_{v} .

Trackless Jet

- Low efficiency in range of decay of radius 0 to 1200 mm.
 - Efficiency takes a heavy hit from requiring a muon within the jet cone.
 - Muon requirement is necessary in order to reduce QCD background at trigger level.

Calorimeter Energy Ratio Trigger

- Highly efficient for the limited range of radius of decay from 2500 mm to 3500 mm.
 - Picks up decays in the outer extent of the EM calorimeter and in the Hadronic Calorimeter.
- Sees reduction in efficiency with the addition of pileup.
 - Pileup increases the likelihood of additional energy deposition in the EM Calorimeter within the jet cone.
 - Thus reducing the value of $\log_{10}(E_{HAD}/E_{EM})$

Rol Cluster Trigger

- Highly efficient for limited range of decay radius 4m to 7m.
 - This range roughly reflects the region between the end of the Hadronic Calorimeter and the first muon trigger plane.
- Little difference seen with the addition of pileup to the MC simulation.
 - This is expected, as the detector is designed to stop all but muons from reaching the MS.

21

Combined performance of all 3 triggers.

- 300k events were simulated with incremental π_v proper lifetime in the range 0 to 20000 mm.
- Using the efficiency of each trigger with respect to radius of decay of the π_v shown on the previous 3 slides, the overall fraction of events passing each trigger was calculated with respect to π_v proper lifetime.
- Uncertainty bounds (grey stripe) are from uncertainty in the efficiency plots.

Backgrounds

Beam-induced backgrounds, QCD Dijet background, and Cosmic.

- Muons travel parallel to the beam axis and bremstrahlung within the calorimeters.
- In their traversal of the detector they may leave a trail of excited calorimeter cells, reconstructed segments within the MS, and reconstructed jet objects.
- Account for 30-60% of Calorimeter Energy Ratio trigger rate in 2011 runs.
- Selection criteria have been developed in order to identify these events.
 - High purity: $\sim 1/10^5$

- Good Efficiency: > 85%
- Rates do not exceed 1% for our Trackless Jet and Muon RoI Cluster triggers. Steve Alkire

QCD Dijet Background at Trigger Level

Tag and probe study using 2010 data--periods B-I, 30 pb⁻¹.

- Tag jet:
 - Seeded by a single-jet trigger
 - By using single jet triggers we do not bias the sample.
 - Statistics are low from heavy prescaling.
 - L2 jets used because prescales are based on energies calculated at L2.
 - $E_T > 25 \text{ GeV}$
 - Passes Good Jet Criteria
 - | η |< 2.0
- Probe jet:
 - $d\phi$ between tag and probe > 2.6
 - $E_T > 25 \text{ GeV}$

QCD Dijet Background at Trigger Level

25

Tag and probe study using 2010 data--periods B-I, 30 pb⁻¹.

- We calculate the fake rate for probe jets passing each trigger.
- Denominator: all probe jets. Numerator: those passing the HV trigger.
- For Calorimeter Energy Ratio trigger it is shown in exclusive jet energy bins:

QCD Dijet Background at Trigger Level

Tag and probe study using 2010 data--periods B-I, 30 pb⁻¹.

• Differential cross-section of Cal Energy Ratio trigger for QCD dijets. Distributions are from previous plot and cross-section weighted Et distributions of MC J1-J5.

• Total cross-section for Cal Energy Ratio, Trackless Jet, and Muon RoI Cluster triggers based on this approach.

		ATLAS Work in Progress		
	Trigger	Fake rate (nb)	Unc.	
	Cal_Energy_Ratio	0.61	0.09	
Steve Alkire	Trackless_Jet	0.42	0.10	
	Muon_RoI_Cluster	0.003	0.002	
	Steve Alkire	Trigger Cal_Energy_Ratio Trackless_Jet Steve Alkire Muon_RoI_Cluster	Trigger Fake rate (nb) Cal_Energy_Ratio 0.61 Trackless_Jet 0.42 Muon_RoI_Cluster 0.003	

Looking Forward

Steve Alkire

Looking Forward

Coming soon: analyses like the following, but real.

- Toy analysis for 2011 run, 47 pb⁻¹, compared to a benchmark MC.
- Philosophy: use the power of 2 HV triggers—reduce your backgrounds by another 10^4 .
 - Tighten isolation cuts already used in Cal Energy Ratio trigger: 0 offline tracks, offline-based ratio, beam background rejection.
 - Require second "tightened" Cal Ratio Jet as well.

ATLAS Work in Progress

Cut	Strategy	Cut Description	Collision	MC
0		All events in sample.		49022
1	Use a Cal Ratio Jet	Event passes Cal Energy Ratio trigger.	42503	
2	and	Beam-induced background cuts applied to Cal Energy Ratio trigger jet.	•	
3	tighten the	Jet quality criteria applied to trigger jet.		
4	quality of selection.	Offline jet satisfies -0.1 $\leq E_{EM}/E_{HAD} \leq 0.1$	•	
5		0 reconstructed offline tracks in jet cone of δ R < 0.2		
6	Use a 2 nd Cal Ratio Jet	Require a second jet at least δ R of .6 from the first with Et > 35 GeV.	•	
7	and	Second jet has 0 reconstructed offline tracks		
8	tighten the	Second jet satisfies $-0.1 \le E_{EM}/E_{HAD} \le 0.1$	•	
9	quality of selection.	Beam-induced background cuts applied to second jet.		
10		Jet quality criteria applied to second jet.	6	281

Conclusions

- Sorry, no limits set yet.
- 3 signature driven Long-lived neutral particle triggers are present and un-prescaled since 2010.
- We are working to understand our backgrounds and uncertainties right now.
- Stay tuned for analyses for winter conferences:
 - Combining all 3 triggers.
 - Modeling our backgrounds—QCD dijets, beam-related, cosmic.
 - Data in the fb⁻¹

