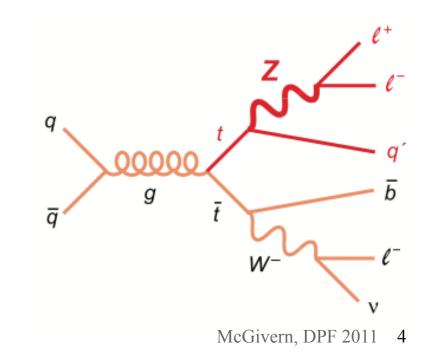


Using trileptons to investigate flavor changing neutral current (FCNC) top quark decays at DZero

Carrie McGivern University of Kansas On behalf of the DZero Collaboration Divisions of Particles and Fields, Aug. 10, 2011

Outline

- Motivation
- DZero detector
- Event selection
- FCNC signal modeling
- Branching ratio and coupling limits
- Summary



- The standard model (SM) has been found to be in excellent agreement with experimental results
- SM Lagrangian contains no flavor changing neutral currents terms
 - t \rightarrow c,u quarks transitions only possible through radiative corrections
- Branching ratio of t \rightarrow Zc is ~10⁻¹⁴, while t \rightarrow Zu is ~10⁻¹⁷
- Some theories beyond SM allow $B \sim 10^{-4}$
- Observation would certainly point to physics beyond the SM

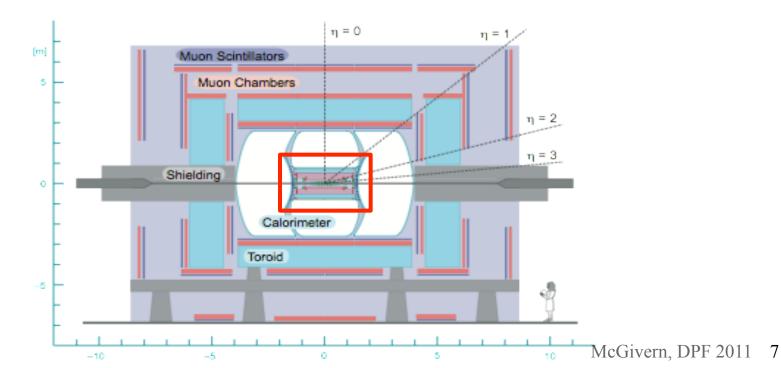
- Use a previous trilepton + imbalance in transverse momentum WZ cross section analysis : Physics Letters B 695, 67 (2011)
- Search for signal using new final state : X is any number of jets $p\bar{p} \rightarrow t\bar{t} \rightarrow WbZq \rightarrow \ell\nu\ell\ell + X$
- Set limits on branching ratio of $t \rightarrow Zq$ (q = u, c)

McGivern, DPF 20

- Use a previous trilepton + imbalance in transverse momentum WZ cross section analysis : Physics Letters B 695, 67 (2011)
- Search for signal using new final state : X is any number of jets $p\bar{p} \rightarrow t\bar{t} \rightarrow WbZq \rightarrow \ell\nu\ell\ell + X$
- Set limits on branching ratio of $t \rightarrow Zq$ (q = u, c)

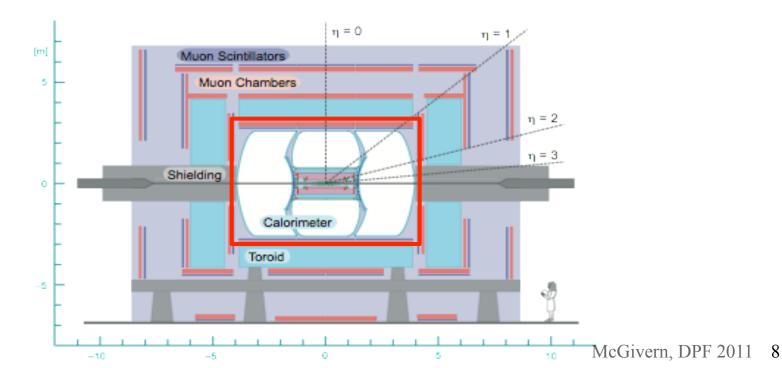
- CDF results : $B(t \rightarrow Zq) < 3.7\%$ (observed) with a < 5.0% (expected) at 95% C.L. using 1.9 fb⁻¹ T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 101, 192002 (2008) $- Z \rightarrow \ell \ell + \ge 4$ jets
 - Complementary search

McGivern, DPF 20


- Use a previous trilepton + imbalance in transverse momentum WZ cross section analysis : Physics Letters B 695, 67 (2011)
- Search for signal using new final state : X is any number of jets $p\bar{p} \rightarrow t\bar{t} \rightarrow WbZq \rightarrow \ell\nu\ell\ell + X$
- Set limits on branching ratio of $t \rightarrow Zq (q = u, c)$
- Atlas results : B(t \rightarrow Zq) < 17% (observed) with a < 12% (expected) at 95% C.L. using 35 pb⁻¹ ATLAS-CONF-2011-061 - Three leptons + MET + 2 jets q \overline{q} \overline{q} \overline{q}

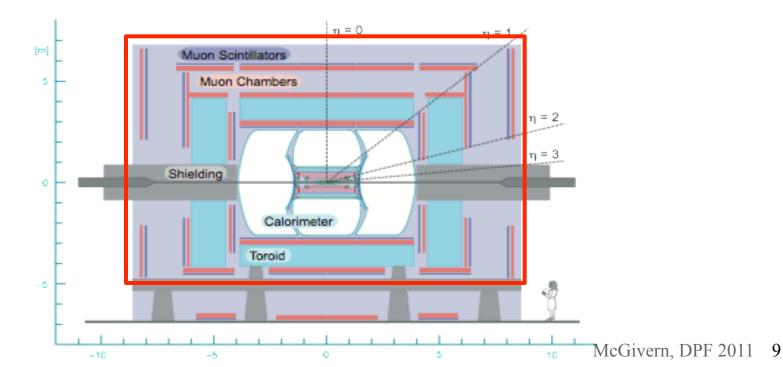
DZero Detector

- Consists of three sub-detectors :
 - Tracking : Reconstruct interaction vertices and measure momenta of charged particles, enclosed in a 1.9 T solenoid field
 - Calorimeter : EM and Hadronic calorimeters measure energies of hadrons, electrons and photons
 - Muon : consists of a layer of drift tubes and scintillation counters inside a 1.8 T toroidal magnet

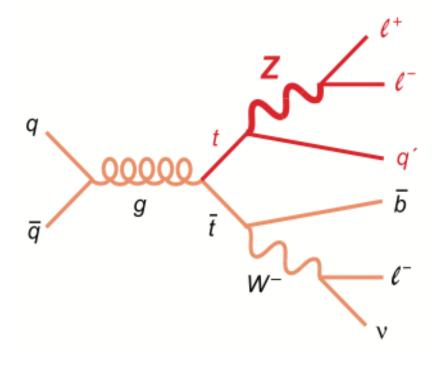


DZero Detector

- Consists of three sub-detectors :
 - Tracking : Reconstruct interaction vertices and measure momenta of charged particles, enclosed in a 1.9 T solenoid field
 - Calorimeter : EM and Hadronic calorimeters measure energies of hadrons, electrons and photons
 - Muon : consists of a layer of drift tubes and scintillation counters inside a 1.8 T toroidal magnet



DZero Detector



- Consists of three sub-detectors :
 - Tracking : Reconstruct interaction vertices and measure momenta of charged particles, enclosed in a 1.9 T solenoid field
 - Calorimeter : EM and Hadronic calorimeters measure energies of hadrons, electrons and photons
 - Muon : consists of a layer of drift tubes and scintillation counters inside a 1.8 T toroidal magnet

Event Selection

 \geq <u>3 isolated leptons</u>, with high p_T, separated in $\Delta R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)}$

Imbalance of transverse momentum (MET)

Three jet multiplicity bins; $0, 1, \ge 2$

Come from same vertex

Invariant dilepton mass within Z window

- Use 4.1 fb⁻¹ of integrated luminosity collected from the Tevatron Run II, selection criteria optimized with $s/\sqrt{(s+b)}$.
- Signal : FCNC ttbar, Main Backgrounds: WZ, ZZ, Zγ, V+Jets, SM ttbar
 - Determined using MC Simulations and Data

FCNC Signal Modeling KUKANSAS

- Use CompHEP to generate the signal at the parton level (to correctly model the helicity structure) and PYTHIA for jet hadronization
 - Modified to include the following FCNC Lagrangian

$$\mathcal{L}_{FCNC} = \frac{e}{2\sin\theta_W\cos\theta_W} \, \bar{t}\gamma_\mu (v_Z - a_Z\gamma_5)cZ^\mu + h.c.$$

• Assume SM neutral current couplings (Z \rightarrow qqbar for uptype quarks) : $v_{tuZ} = 1/2 - 4/3 \sin^2 \theta_W = 0.192$, $a_{tuZ} = 1/2$

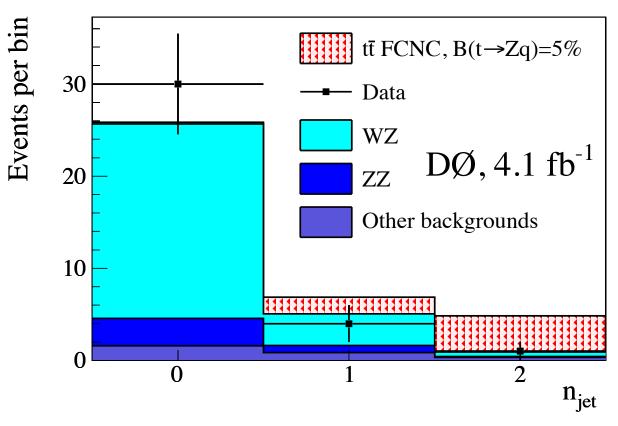

FCNC Signal Modeling KUKANSAS

- Use CompHEP to generate the signal at the parton level (to correctly model the helicity structure) and PYTHIA for jet hadronization
 - Modified to include the following FCNC Lagrangian

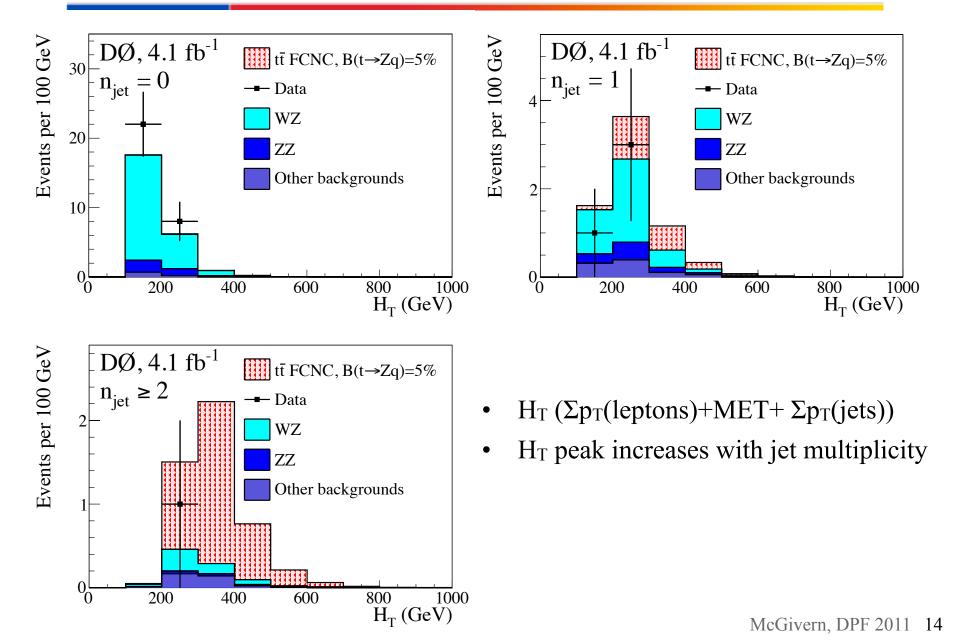
$$\mathcal{L}_{FCNC} = \frac{e}{2\sin\theta_W \cos\theta_W} \, \bar{t}\gamma_\mu (\boldsymbol{v}_{\boldsymbol{Z}} - \boldsymbol{a}_{\boldsymbol{Z}}\gamma_5)cZ^\mu + h.c.$$

• Assume SM neutral current couplings (Z \rightarrow qqbar for uptype quarks) : $v_{tuZ} = 1/2 - 4/3 \sin^2 \theta_W = 0.192$, $a_{tuZ} = 1/2$

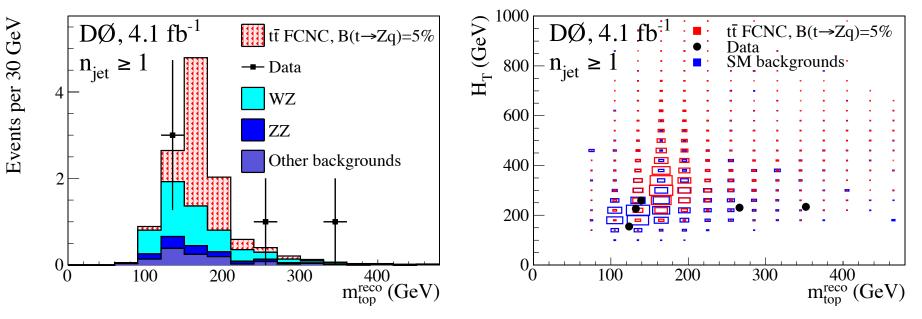
From CompHEP: $p\bar{p} \rightarrow ZqW^-\bar{b} \rightarrow e^+e^-q\mu^-\nu_{\mu}^-\bar{b}$

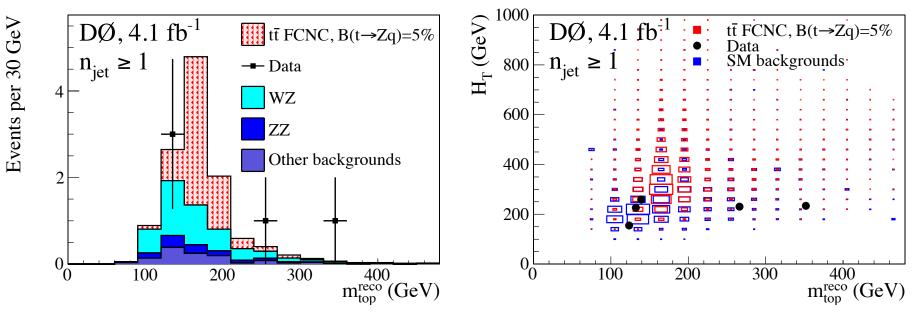


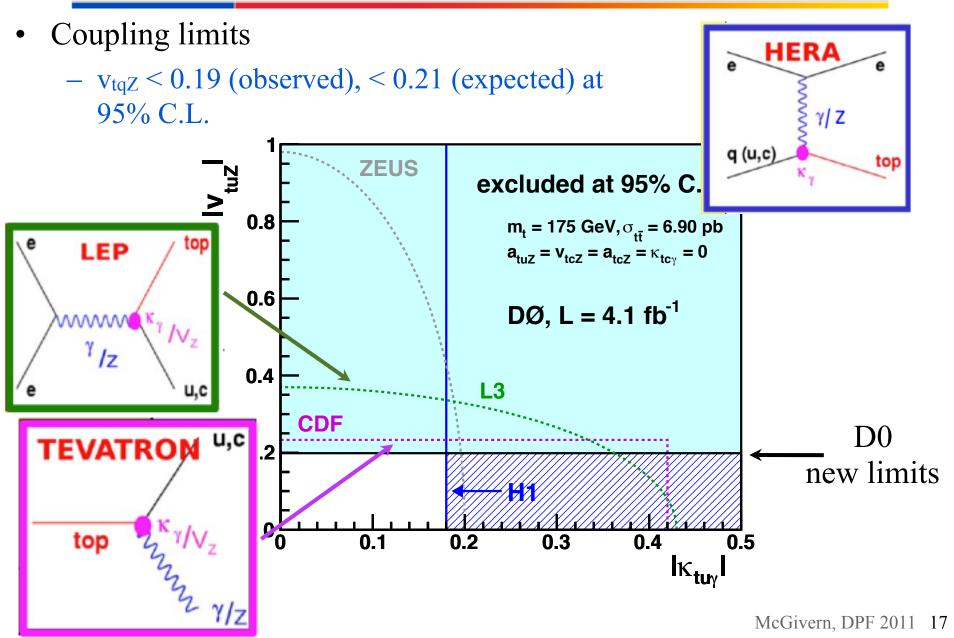
12



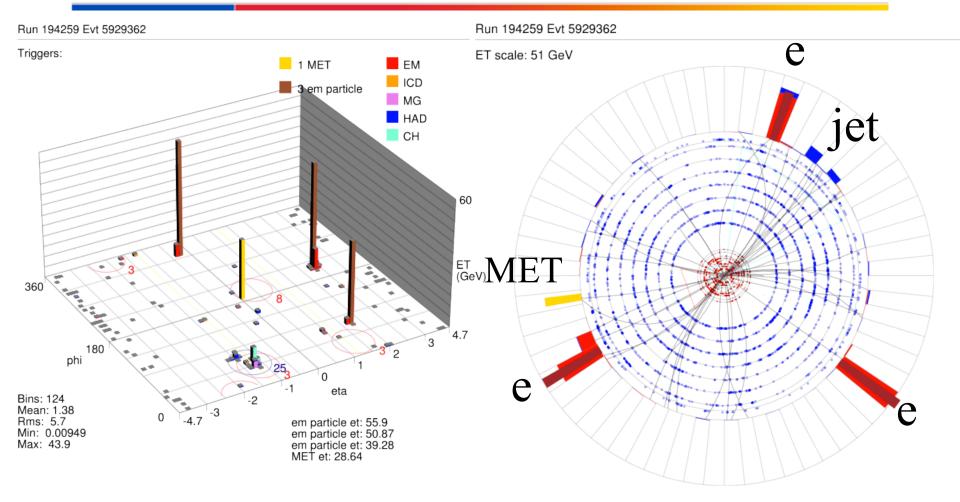
- 35 candidate events
 - Expected background = $31.8 \pm 0.3(\text{stat}) \pm 3.9(\text{syst})$ events
- Dominate Systematic Uncertainties : Lepton ID, Theoretical Cross Sections (including FCNC ttbar signal), Jet Energy Scale, Jet Energy Resolution


Scalar H_T Distributions


- Use n_{jet}, H_T (Σp_T(leptons)+MET+ Σp_T(jets)), and reconstructed top quark mass (mt^{reco}) (from the Z leptons and jets) to separate signal from background
- Good separation is observed between signal and background in both variables



- Use Poisson probabilities, with systematic uncertainty gaussian smearing, to extract the limits
- $B(t \rightarrow Zq) < 3.2\%$ (observed), < 3.8% (expected) at 95% C.L.



Candidate eee+1jet Event

• eee + 1 jet candidate event, with $m_t^{reco} = 351 \text{ GeV}$

Summary

- No indication of new physics as of yet
- Recently published in Physics Letters B 701, 313 (2011)
- $B(t \rightarrow Zq) < 3.2\%$ (observed), < 3.8% (expected) at 95% C.L.
- Coupling limits $v_{tZq} < 0.19$ (observed), < 0.21 (expected) at 95% C.L.
 - World's best v_{tZq} limits!

Backup Slides

McGivern, DPF 2011 20

- Look for a signal with 3 or more isolated leptons and an imbalance in transverse momentum (MET)
- Use 4.1 fb⁻¹ of integrated luminosity collected from the Tevatron Run II, selection criteria optimized with $s/\sqrt{(s+b)}$.
- Main Backgrounds: WZ, ZZ, Zγ, V+Jets, SM ttbar
 - Determined using MC Simulations and Data
- General selection criteria for all leptons :
 - $Invariant dilepton mass (74 GeV < M_{ee} < 104 GeV, 65 GeV < M_{\mu\mu} < 115 GeV, 60 GeV < M_{eeICR} < 120 GeV)$
 - Missing Transverse Energy > (20 30) GeV
 - Lepton $p_T > (15 30)$ GeV
 - Lepton $\Delta \mathbf{R} (= \sqrt{(\Delta \phi^2 + \Delta \eta^2)}) > 0.5 0.6$
 - Δz_{DCA} (between any two lepton tracks) < 3 cm
 - $Jet E_T > 20 GeV$

FCNC Event Yields

Source	eee	$ee\mu$	$e\mu\mu$	
WZ	$5.17 \pm 0.06 \pm 0.97$	$5.72 \pm 0.07 \pm 0.89$	$4.76 \pm 0.06 \pm 0.70$	
ZZ	$0.25 \pm 0.03 \pm 0.05$	$1.35 \pm 0.06 \pm 0.21$	$0.52 \pm 0.04 \pm 0.08$	
V + jets	$0.42 \pm 0.11 \pm 0.08$	$0.14 \pm 0.04 \pm 0.06$	$0.48 \pm 0.11 \pm 0.01$	
$Z\gamma$	$0.18 \pm 0.05 \pm 0.07$	< 0.001	$0.66 \pm 0.07 \pm 0.38$	
$t\bar{t}$	$0.04 \pm 0.01 \pm 0.01$	$0.013 \pm 0.004 \pm 0.002$	$0.05 \pm 0.01 \pm 0.01$	
Total bkg.	$6.05 \pm 0.14 \pm 0.98$	$7.22 \pm 0.10 \pm 0.92$	$6.43 \pm 0.15 \pm 0.71$	-
Observed	7	10	9	← Jet Inclu
Source	μμμ	$ee_{ICR}e$	$ee_{ICR}\mu$	
WZ	$6.09 \pm 0.07 \pm 1.00$	$1.46 \pm 0.03 \pm 0.24$	$1.78 \pm 0.04 \pm 0.25$	
ZZ	$1.31 \pm 0.06 \pm 0.22$	$0.08 \pm 0.01 \pm 0.02$	$0.46 \pm 0.03 \pm 0.07$	
V + jets	$0.18 \pm 0.05 \pm 0.03$	$0.18 \pm 0.07 \pm 0.08$	$0.26 \pm 0.18 \pm 0.16$	
$Z\gamma$	< 0.001	$0.10 \pm 0.01 \pm 0.03$	< 0.001	
tĒ	$0.04 \pm 0.01 \pm 0.01$	$0.010 \pm 0.003 \pm 0.002$	$0.022 \pm 0.004 \pm 0.003$	
Total bkg.	$7.75 \pm 0.13 \pm 1.02$	$1.83 \pm 0.08 \pm 0.26$	$2.52 \pm 0.19 \pm 0.31$	
Observed	5	1	3	

Source	eee	ееµ	$e \mu \mu$
WZ	$4.40 \pm 0.06 \pm 0.83$	$4.80 \pm 0.06 \pm 0.75$	$3.92 \pm 0.05 \pm 0.58$
ZZ	$0.17 \pm 0.02 \pm 0.03$	$1.02 \pm 0.06 \pm 0.16$	$0.33 \pm 0.03 \pm 0.05$
V + jets	$0.16 \pm 0.07 \pm 0.08$	$0.05 \pm 0.02 \pm 0.03$	$0.23 \pm 0.07 \pm 0.01$
$Z\gamma$	$0.11 \pm 0.04 \pm 0.04$	< 0.001	$0.43 \pm 0.06 \pm 0.25$
tī	$0.001\pm 0.001 < 0.001$	$0.001\pm 0.001 < 0.001$	< 0.001
Total bkg.	$4.84 \pm 0.10 \pm 0.84$	$5.87 \pm 0.09 \pm 0.77$	$4.68 \pm 0.08 \pm 0.63$
Observed	6	7	8
Source	$\mu\mu\mu$	$ee_{ICR}e$	$ee_{ICR}\mu$
WZ	$5.02 \pm 0.06 \pm 0.83$	$1.23 \pm 0.03 \pm 0.20$	$1.52 \pm 0.03 \pm 0.22$
ZZ	$0.99 \pm 0.05 \pm 0.17$	$0.05 \pm 0.01 \pm 0.01$	$0.38 \pm 0.03 \pm 0.05$
V + jets	$0.12 \pm 0.04 \pm 0.03$	$0.07 \pm 0.05 \pm 0.04$	$0.25 \pm 0.18 \pm 0.16$
$Z\gamma$	< 0.001	$0.09 \pm 0.01 \pm 0.03$	< 0.001
tĒ	$0.002\pm 0.001<0.001$	< 0.001	$0.003\pm 0.001<0.001$
Total bkg.	$6.01 \pm 0.08 \pm 0.85$	$1.44 \pm 0.06 \pm 0.21$	$2.15 \pm 0.19 \pm 0.28$
Observed	4	1	MaCinore DDE
	-	*	McGivern, DPF 2

 0^{th} Jet Bin \longrightarrow

FCNC Event Yields

Source	eee	$ee\mu$	$e\mu\mu$]
WZ	$0.69 \pm 0.02 \pm 0.14$	$0.80 \pm 0.03 \pm 0.14$	$0.73 \pm 0.02 \pm 0.13$	
ZZ	$0.07 \pm 0.02 \pm 0.01$	$0.28 \pm 0.03 \pm 0.05$	$0.16 \pm 0.02 \pm 0.03$	
V + jets	$0.21 \pm 0.08 \pm 0.04$	$0.06 \pm 0.03 \pm 0.02$	$0.21 \pm 0.06 \pm 0.01$	
$Z\gamma$	$0.04 \pm 0.03 \pm 0.02$	< 0.001	$0.17 \pm 0.04 \pm 0.10$	
$t\bar{t}$	$0.012 \pm 0.004 \pm 0.002$	$0.006 \pm 0.002 \pm 0.001$	$0.009 \pm 0.002 \pm 0.001$	
Total bkg.	$1.02 \pm 0.09 \pm 0.15$	$1.15 \pm 0.05 \pm 0.15$	$1.09 \pm 0.05 \pm 0.17$	
Observed	1	2	1	\leftarrow 1 st Jet Bin
Source				
300108	$\mu\mu\mu$	ee _{ICR} e	$ee_{ICR}\mu$	
WZ	$\frac{\mu\mu\mu}{0.93 \pm 0.03 \pm 0.19}$	ee_{ICRe} 0.20 ± 0.01 ± 0.04	$ee_{ICR}\mu$ 0.24 ± 0.01 ± 0.05	
WZ	$0.93 \pm 0.03 \pm 0.19$	$0.20 \pm 0.01 \pm 0.04$	$0.24 \pm 0.01 \pm 0.05$	
WZ ZZ	$\begin{array}{c} 0.93 \pm 0.03 \pm 0.19 \\ 0.28 \pm 0.03 \pm 0.06 \end{array}$	$\begin{array}{c} 0.20 \pm 0.01 \pm 0.04 \\ 0.02 \pm 0.01 \pm 0.01 \end{array}$	$\begin{array}{c} 0.24 \pm 0.01 \pm 0.05 \\ 0.08 \pm 0.01 \pm 0.01 \end{array}$	
$egin{array}{c} WZ \ ZZ \ V+jets \end{array}$	$\begin{array}{c} 0.93 \pm 0.03 \pm 0.19 \\ 0.28 \pm 0.03 \pm 0.06 \\ 0.07 \pm 0.03 \pm 0.03 \end{array}$	$\begin{array}{c} 0.20 \pm 0.01 \pm 0.04 \\ 0.02 \pm 0.01 \pm 0.01 \\ 0.04 \pm 0.03 \pm 0.04 \end{array}$	$\begin{array}{c} 0.24 \pm 0.01 \pm 0.05 \\ 0.08 \pm 0.01 \pm 0.01 \\ < 0.001 \end{array}$	
$WZ \\ ZZ \\ V + jets \\ Z\gamma$	$\begin{array}{c} 0.93 \pm 0.03 \pm 0.19 \\ 0.28 \pm 0.03 \pm 0.06 \\ 0.07 \pm 0.03 \pm 0.03 \\ < 0.001 \end{array}$	$\begin{array}{c} 0.20 \pm 0.01 \pm 0.04 \\ 0.02 \pm 0.01 \pm 0.01 \\ 0.04 \pm 0.03 \pm 0.04 \\ 0.016 \pm 0.004 \pm 0.005 \end{array}$	$\begin{array}{c} 0.24 \pm 0.01 \pm 0.05 \\ 0.08 \pm 0.01 \pm 0.01 \\ < 0.001 \\ < 0.001 \end{array}$	

Source	eee	$ee\mu$	$e\mu\mu$
WZ	$0.08 \pm 0.01 \pm 0.02$	$0.12 \pm 0.01 \pm 0.03$	$0.11 \pm 0.01 \pm 0.04$
ZZ	$0.0108 \pm 0.005 \pm 0.003$	$0.04 \pm 0.01 \pm 0.02$	$0.03 \pm 0.01 \pm 0.02$
V + jets	$0.06 \pm 0.04 \pm 0.08$	$0.04 \pm 0.03 \pm 0.01$	$0.03 \pm 0.03 \pm 0.01$
$Z\gamma$	$0.03 \pm 0.02 \pm 0.01$	< 0.001	$0.05 \pm 0.02 \pm 0.03$
$t\bar{t}$	$0.011 \pm 0.004 \pm 0.002$	$0.006 \pm 0.003 \pm 0.001$	$0.03 \pm 0.01 \pm 0.01$
Total bkg.	$0.19 \pm 0.05 \pm 0.08$	$0.21 \pm 0.03 \pm 0.04$	$0.65 \pm 0.11 \pm 0.06$
Observed	0	1	0
Source	μμμ	$ee_{ICR}e$	$ee_{ICR}\mu$
WZ	$0.14 \pm 0.01 \pm 0.04$	$0.03 \pm 0.01 \pm 0.01$	$0.03 \pm 0.01 \pm 0.01$
ZZ	$0.04 \pm 0.01 \pm 0.02$	$0.004 \pm 0.003 \pm 0.004$	$0.008 \pm 0.004 \pm 0.002$
V + jets	< 0.001	$0.07 \pm 0.04 \pm 0.04$	< 0.001
$Z\gamma$	< 0.001	$0.001 \pm 0.001 \pm 0.001$	< 0.001
tī	$0.018 \pm 0.004 \pm 0.003$	$0.002\pm 0.002 < 0.001$	$0.011 \pm 0.003 \pm 0.002$
Total bkg.	$0.50 \pm 0.09 \pm 0.05$	$0.11 \pm 0.04 \pm 0.04$	$0.05 \pm 0.01 \pm 0.01$
Observed	0	0	0

 \geq 2 Jets Bin \longrightarrow