

Daya Bay Neutrino Experiment: Goal, Progress and Schedule

Zhe Wang, Brookhaven National Lab (on behalf of the Daya Bay Collaboration) DPF meeting at Brown University Aug. 9, 2011

Daya Bay collaboration BROOKHAVEN NATIONAL LABORATORY 1999

Neutrino Mixing and θ_{13}

Based on an assumption of three generations, a 3x3 neutrino mixing matrix was proposed – PMNS.

$$U = \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{array} \right) \left(\begin{array}{cccc} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{array} \right) \left(\begin{array}{cccc} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{array} \right)$$

- The SM has no prediction power on the values of these mixing angles and the CPV phase. It relies on experimental input.
- 2. θ_{13} is the last unobserved mixing angle.
- 3. Provide knowledge of the basic assumptions:
 - o The unitarity of PMNS matrix
 - Three generations of neutrinos
- 4. A critical input for other researches, for example:
 - Search for leptonic CP violation
 - Determine the neutrino mass hierarchy
 - Understand the 'effective' neutrino Majorana mass limit

Measurement Method

Detection of anti-electron-neutrino

$$\overline{V}_e + p \rightarrow e^+ + n$$
 Prompt: e⁺ annihilation Delay: neutron capture Neutrino events: coincidence in time and energy $0.3b \rightarrow +p \rightarrow D + \gamma (2.2 \ MeV)$ (delayed) 180µs $50kb \rightarrow +Gd \rightarrow Gd^* \rightarrow Gd + \gamma$'s (8 MeV) (delayed) 28µs 0.1%Gd

Extraction of θ_{13} Far/Near IBD events ratio:

$$\frac{N_{\rm f}}{N_{\rm n}} = \left(\frac{N_{\rm p,f}}{N_{\rm p,n}}\right) \left(\frac{L_{\rm n}}{L_{\rm f}}\right)^2 \left(\frac{\epsilon_{\rm f}}{\epsilon_{\rm n}}\right) \left[\frac{P_{\rm sur}(E,L_{\rm f})}{P_{\rm sur}(E,L_{\rm n})}\right]$$

Measure $\sin^2 2\theta_{13}$ to the precision 0.01

* We plan to measure $\sin^2 2\theta_{13}$ to the precision 0.01 at 90% CL in three years.

☐ Far-near Inverse-Beta-Decay (IBD) events ratio:

$$\frac{N_{\rm f}}{N_{\rm n}} = \left(\frac{N_{\rm p,f}}{N_{\rm p,n}}\right) \left(\frac{L_{\rm n}}{L_{\rm f}}\right)^2 \left(\frac{\epsilon_{\rm f}}{\epsilon_{\rm n}}\right) \left[\frac{P_{\rm sur}(E,L_{\rm f})}{P_{\rm sur}(E,L_{\rm n})}\right]$$

A few key factors:

- 1. Near-Far error cancelation
- 2. Optimized baseline
- 3. High reactor power
- 4. Overburden and muon veto
- 5. High target mass
- 6. Identical Antineutrino detector
- 7. Detector swapping
- Details about sensitivity and design can be found in arXiv:hep-ex/0701029

Nuclear Power Plant

Ling Ao II cores

Turned on

recently

Daya Bay cores

BROOKHAVEN NATIONAL LABORATORY

Three Experimental Sites

Far

Target mass: 80 ton

1600m to LA, 1900m to DYB

Overburden: 350m

Muon rate: 0.04Hz/m²

IBD rate: 90/day

Daya Bay near

Target mass: 40 ton

Baseline: 360m

Overburden: 98m

Muon rate: 1.2Hz/m²

IBD rate: 840/day

BROOKHAVEN NATIONAL LABORATORY

Antineutrino Detector (AD)

Antineutrino Detector Construction

Fully populated AD

Instruments on lid (calibration unit, etc.)

Image of inside an AD

AD1 moved to hall 1

Muon Veto

Finished DayaBay near hall water pool

Hall 1 construction is complete.

Redundancy: two water cerenkov detectors

Liquid scintillator

LS hall layout

5x40ton Gd-LS storage tank

Mixing

185 tons 0.1% GdLS stored in 5 40-ton tanks

rage Filling

Redundant mass measurement systems:

- 1. 20ton ISO tank
- 2. Coriolis mass flowmeters

Uncertainty: 4kg of 20t

180 tons LS stored in 200 ton pool

• Zhe Wang @ DPF

Filling system

BROOKHAVEN NATIONAL LABORATORY

Electronics

PMT Front End Electronics 1.5625 ns TDC 300 ns ADC shaping

RPC Electronics

DAQ system Flexible multi-detector configuration Fully remote control

GPS synchronized clock

Trigger system Multiplicity, energy cross trigger, etc.

Aug. 9, 2011 ● 13

Data transfer, data quality monitor

Measured data delivery times are ~14 minutes from Daya Bay to US Tier 1 at LBNL/NERSC.

Automatic detector performance monitor

quality monitor

AD 1&2 Dry Run Status BROOKI

Example 192-PMT charge distribution for one off-center LED source run (ACUB)

72 hours PMT gain monitor

LS, GdLS Properties

The liquid properties have been stable so far

Summary and outlook

- To achieve the challenging goal of measuring sin²2θ₁₃ to the precision 0.01, great efforts were put into the design and construction of the Daya Bay Neutrino Experiment. All these key concepts now are being turned from blueprint to reality.
- AD 1&2 dry run and filling indicate a good status.
- Schedule:
 - 1. Begin data taking with two ADs in the Daya Bay Hall in the summer of 2011
 - 2. Begin data taking with all eight ADs in three halls in the summer of 2012 to reach sin²2θ₁₃ of 0.01 or better

Thank you.