Two-loop corrections to W and Z boson production at high p_T

Nikolaos Kidonakis
(Kennesaw State University)

- Partonic production channels at LO
- NLO corrections
- Soft-gluon corrections
- Two-loop calculations and NNLL resummation
- Approximate NNLO p_T distribution at LHC and Tevatron

In collaboration with R. J. Gonsalves
W and Z production at large \(p_T \) - parton processes

W and Z hadroproduction useful in testing the SM and in estimates of backgrounds to Higgs production and new physics (new gauge bosons)

\(p_T \) distribution falls rapidly as \(p_T \) increases

Partonic channels at LO

\[q(p_a) + g(p_b) \rightarrow W(Q) + q(p_c) \]

\[q(p_a) + \bar{q}(p_b) \rightarrow W(Q) + g(p_c) \]

Define \(s = (p_a + p_b)^2 \), \(t = (p_a - Q)^2 \), \(u = (p_b - Q)^2 \) and \(s_4 = s + t + u - Q^2 \)

At threshold \(s_4 \rightarrow 0 \)

Soft corrections \(\left[\frac{\ln^t(s_4/p_T^2)}{s_4} \right]_+ \)

Virtual corrections \(\delta(s_4) \)
Leading-order results for W production at the Tevatron

qg and $q\bar{q}$ channel equally important
Leading-order results for W production at the LHC

W production at LHC $S^{1/2}=7 \text{ TeV}$ $\mu=p_T$

qg channel is numerically dominant
W production at LHC \(S^{1/2} = 14 \) TeV \(\mu = p_T \)

\[\frac{d\sigma}{dp_T^2} \text{(pb/GeV}^2) \]

- **LO total**
- **LO qg -> W**
- **LO q\bar{q} -> W**

\textit{qg channel is numerically dominant}
LO scale dependence for W production at the LHC

W production at LHC $S^{1/2}=14$ TeV $p_T=80$ GeV

At LO μ_F and μ_R dependence largely cancel each other

N. Kidonakis, DPF 2011, Providence, Rhode Island, August 2011
W production at LHC \(S^{1/2} = 7 \text{ TeV} \) \(p_T = 80 \text{ GeV} \)

somewhat different \(\mu \) dependence at 7 and 14 TeV
NLO corrections

The NLO cross section can be written as

\[
E_Q \frac{d\hat{\sigma}_{f_a f_b \rightarrow W(Q)+X}}{d^3Q} = \delta(s_4)\alpha_s(\mu_R^2) [A(s, t, u) + \alpha_s(\mu_R^2) B(s, t, u, \mu_R)] + \alpha_s^2(\mu_R^2) C(s, t, u, s_4, \mu_F)
\]

The coefficient functions \(A, B,\) and \(C\) depend on the parton flavors.

The coefficient \(A(s, t, u)\) arises from the LO processes.

\(B(s, t, u, \mu_R)\) is the sum of virtual corrections and of singular terms \(\sim \delta(s_4)\) in the real radiative corrections.

\(C(s, t, u, s_4, \mu_F)\) is from real emission processes away from \(s_4 = 0\)

Soft-gluon corrections

\[D_l(s_4) \equiv \left[\ln^l \left(\frac{s_4}{p_T^2} \right) \right]_+ \]

For the order \(\alpha_s^n \) corrections \(l \leq 2n - 1 \)

At NLO, \(D_1(s_4) \) and \(D_0(s_4) \) terms

At NNLO, \(D_3(s_4), D_2(s_4), D_1(s_4), \) and \(D_0(s_4) \) terms

We can formally resum these logarithms for \(W \) and \(Z \) production at large \(p_T \) to all orders in \(\alpha_s \)

Applied to \(W \) production at the Tevatron: JHEP 02, 027 (2004)

New two-loop results: \(D_0(s_4) \) terms now fully determined
Soft-Gluon Resummation

Resummation follows from factorization properties of the cross section - performed in moment space

Resummed cross section

\[\hat{\sigma}^{res}(N) = \exp \left[\sum_i E_i(N_i) \right] \exp \left[E_j'(N') \right] \exp \left[\sum_{i=1,2} 2 \int_{\mu_F}^{\sqrt{s}} \frac{d\mu}{\mu} \gamma_{i/i} \left(\tilde{N}_i, \alpha_s(\mu) \right) \right] \times H(\alpha_s) S \left(\alpha_s \left(\frac{\sqrt{s}}{\tilde{N}'} \right) \right) \exp \left[\int_{\sqrt{s}}^{\sqrt{s}/\tilde{N}'} \frac{d\mu}{\mu} 2 \text{Re} \Gamma_S(\alpha_s(\mu)) \right] \]

\[\Gamma_S \text{ is the soft anomalous dimension} \]

\[\Gamma_S = \frac{\alpha_s}{\pi} \Gamma_S^{(1)} + \frac{\alpha_s^2}{\pi^2} \Gamma_S^{(2)} + \cdots \]

N. Kidonakis, DPF 2011, Providence, Rhode Island, August 2011
Two-loop soft anomalous dimension

Two-loop eikonal diagrams for $qg \rightarrow Wq$

Determine $\Gamma^{(2)}_S$ from UV poles of two-loop dimensionally regularized integrals
Two-loop soft anomalous dimension

For $qg \to Wq$ or $qg \to Zq$

$$\Gamma^{(1)}_{S, qg\to Wq} = C_F \ln \left(\frac{-u}{s} \right) + \frac{C_A}{2} \ln \left(\frac{t}{u} \right)$$

$$\Gamma^{(2)}_{S, qg\to Wq} = \frac{K}{2} \Gamma^{(1)}_{S, qg\to Wq}$$

For $q\bar{q} \to Wg$ or $q\bar{q} \to Zg$

$$\Gamma^{(1)}_{S, q\bar{q}\to Wg} = \frac{C_A}{2} \ln \left(\frac{tu}{s^2} \right)$$

$$\Gamma^{(2)}_{S, q\bar{q}\to Wg} = \frac{K}{2} \Gamma^{(1)}_{S, q\bar{q}\to Wg}$$
NLO and NNLO approx for W production at the Tevatron

NLO corrections and NNLO approximate corrections are significant

N. Kidonakis, DPF 2011, Providence, Rhode Island, August 2011
N. Kidonakis, DPF 2011, Providence, Rhode Island, August 2011

large NLO corrections
significant NNLO approximate corrections
W production at LHC $S^{1/2}=14$ TeV $\mu=\mathbf{p}_T$

large NLO corrections
significant NNLO approximate corrections

N. Kidonakis, DPF 2011, Providence, Rhode Island, August 2011
Summary

- W and Z production at large p_T
- LO and NLO results
- Soft-gluon threshold corrections
- Two-loop resummation
- NNLO threshold corrections have been calculated
- Important for greater theoretical accuracy
- W production at Tevatron and LHC
- More work is under way