CP Violation

Meeting of the APS Division of Particles and Fields Brown University August 13, 2011

> Hassan Jawahery University of Maryland

A brief status report

- > CP violation remains a rare phenomenon:
 - > CPV is observed- so far- only in Weak decays of K and B mesons.
 - > No evidence for CPV in the up-quark sector, the lepton sector,... EDM..
 - > CPV is required for explaining the matter dominance of the universe
- The existing data are consistent with the Standard Model- the CKM mechanism with a single CPV parameter- as the dominant source of the laboratory observed CPV effects. (Nobel 2008)
 - > The conclusion of 5 decades of flavor physics- with enormous progress made in the past decade.
- The search for CPV sources beyond SM remains a major focus of the field, including the LHC, & future Neutrino and Super Flavor expt's.
 - > Baryogenesis with SM CPV fails to come up with $n_B/n_\gamma \sim 10^{-10}$
 - Most extensions of SM contain new sources of CPV & the CKM test (now at O(10%) accuracy) allows plenty of room for it.
 - CPV in the neutrino sector is yet to be observed or seriously constrainedthe primary goal of the long- baseline neutrino expt's.

Huge progress was made in the past decade Driven by data at the B factories, Tevatron and the charm factories and significant theoretical inputs

Figures from Valentin Niess (CKMfitter) at EPS 2011

Outline of the talk

- Status of the CKM test:
 - CPV in B decays & measurements of the CKM Unitarity angles
- Search for New Physics in CPV measurements- Anomalies, puzzles,..
 - CPV in B⁰_s decays
 - The "Kp" puzzle
 - CPV in loop dominated decays,..
 - CPV in charm decays
- Experimental outlook
- Topics not covered:
 - CPV in Kaons: A very mature field with the major focus now on improved QCD calculations of CPV observables, and current and future experiments on rare decays (See A. Soni's talk at this meeting)
 - CPV in tau decays: Extensive searches, but no evidence of CPV found
 - CPV in neutrino interactions: Covered in other talks

Many excellent talks were given at this meeting on experimental results & theoretical interpretation of the results- including these review talks:

- J. Zupan CP Violation mini-review (Tuesday)
- A. Soni Lattice Matrix Elements and CP violation in the LHC era (Wednesday)
- G. Giurgiu, Heavy Flavor at Tevatron (Friday)
- M. Artuso, Heavy Flavor at LHC (Friday)
- W. Wittmer, Status of SuperB Factory Design (Accelerator section, Tuesday)

Manifestation of CP Violation in Meson Decays

> CP Violation in decay amplitude (Direct CPV)

 $|A(M \to f)| \neq |A(\overline{M} \to \overline{f})|$

Requires interference of (at least) two amplitudes with different strong (CP conserving) & weak (CP Violating) phases.

> CP Violation in Neutral Meson Mixing:

> Interference of Decay and Mixing: M^{0} f $\lambda_{f} = \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}} \neq 0$ All of these observables are sensitive to New Physics
>NP can interfere with SM amplitude → Direct CPV
>NP can contribute through mixing→ alter |q/p|, arg(q/p), |λ_f| & arg(λ_f)

CP Violation in B decays

> The ideal system for testing the CKM picture through unitarity triangles.

$$V_{ui}V_{uj}^{*} + V_{ci}V_{cj}^{*} + V_{ti}V_{tj}^{*} = 0 \qquad (i \neq j)$$

e.g. $f_{cp} B_d \rightarrow J/\psi K_s^0$ or $B_s \rightarrow J/\psi \phi$ (with angular analysis) (β_s)

8#

Measurement of sin2 β at the B factories via $B^0 \rightarrow c\overline{c} K^0$

 $\sin 2\beta = 0.678 \pm 0.020$

Measurement of sin2 β

B factories have probably said their "final" word on $\beta(\phi_1)$

 $\beta = (21.4 \pm 0.8)^{\circ}$

•

The other solution- disfavored at >3 σ

It will be a while before there is further improvement in the precision of $\text{sin}2\beta$

Measurement of the angle α

• The b->u dominated decays, $[B \rightarrow \pi \pi: (\pi^+ \pi^-, \pi^+ \pi^0, \pi^0 \pi^0), \rho\pi, \rho\rho]$ serve as the "golden" modes for measuring α

But in reality there are other contributors, which complicate life:

Isospin analysis comes to the rescue: Need all elements of B⁰ and B⁰ $\rightarrow \pi\pi$ $\rightarrow \alpha$ with 8- fold ambiguity [Gronau & London]

Measurement of the angle $\boldsymbol{\alpha}$

Measurement of γ

 $\gamma = \arg(\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*})$ is measured by exploiting direct CPV in modes involving : b->c & b->u - Tree level processes unaffected by NP.

Rates and CP asymmetries depend on γ , r_B & strong phases $\delta_B = \delta_u - \delta_c \& \delta_D = \delta_f - \delta_{\bar{f}}$

> D->f_{cp} (K⁺K⁻, $\pi^{+}\pi^{-}$, K⁰_s π^{0} ...) (GLW- Gronau, London, Wyler)

>D→Cabibbo Favord (b->u) & Doubly Cabibbo suppressed Decay (b->c) (ADS -Atwood, Dunietz, Soni) [Belle, LHCB, CDF now report obs. of the suppressed decay]

>D->3-body ($\kappa_s \pi^+\pi^-$, $\kappa_s K^+K^-$) – Dalitz analysis –combining both features – (GGSZ-Giri, Grossman, Soffer, Zupan)

> Extract γ , r_B , δ_B from data

>Needs external input for δ_d (ADS & GGSZ) - a major sources of uncertainty

Measurement of γ – GGSZ method

Currently the measurement of γ is dominated by GGSZ method: Dalitz analysis of D->3-body ($\kappa_s \pi^+\pi^-$, $\kappa_s K^+K^-$)

•Inteference in certain regions- dominated by resonances- provides sensitivity to γ

•Strong phase δ_D vary across the Dalitz plot- requires a model or independent binned measurements.

•BABAR: modeled the phase & amplitude of resonances across DP (Isobar model): $\gamma == (68 \pm 14 \pm 4 \pm 3 \pmod{el})^{\circ}$

•Recent Belle results use CLEO-c's binned- model independent-info on D decay phase across DP: $\gamma = (77.3^{+15.1}_{-14.9} \pm 4.2 \pm 4.3(phase))^{\circ}$

Measurement of γ

•The next major experimental improvement on γ to come from LHCb •Hadron machines have access to a new γ -sensitive channel: $B_s \rightarrow K^+K^-$ -Use of U-spin symmetry of strong interactions connect with $B_d \rightarrow \pi^+\pi^-$ to extract both γ and strong interaction parameters.

•Consistency of γ measurements from different channels provides a check on NP contributions.

Status of the CKM picture

All is well with the CKM picture at O(10%) level:

- > Unitarity triangle passes the test: $\alpha + \beta + \gamma = (178.4 \pm 14.7)^{\circ}$
- Direct measurements of the UT are consistent with the expected values from CP conserving quantities.

DirectCKM fit
$$\alpha = (89.0^{+4.4}_{-4.2})^o$$
 $(97.0^{+1.6}_{-8.1})^o$ $\beta = (21.4 \pm 0.8)^o$ $(28.07^{+0.69}_{-1.69})^o$ $\gamma = (68^{+13}_{-14})^o$ $(67.2^{+3.9}_{-3.9})^o$ CKMFitter: $\overline{\rho} = 0.144^{+0.027}_{-0.018}$ $\overline{\eta} = 0.343 \pm 0.014$

Some tension is present

 $sin 2\beta = 0.678 \pm 0.02(meas) \qquad 0.832^{+0.013}_{-0.033}(fit) (2.7\sigma)$ Driven by V_{ub} from B-> τ_V A motivation, along with other anomalies for 4-generation model of Lunghi & Soni

Any room for CPV beyond SM?

While there is room for CPV beyond SM, the allowed amplitude is not large (~SM)

What does this mean for NP? (see e.g, Grossman, Ligeti, Nir (arXiv: 0904.4262) M. Bona et al (UTfit) hep-ph-0509219, Y. Nir arXiv:0708.1872) ,also Lunghi& Soni arXiv:0807.1971 (fourth generation possibility)

>Strong constraints on flavor changing couplings in NP, or alternatively for generic flavor couplings, constraint on the energy scale of NP (>> TeV)

Search for CPV Beyond SM

B⁰_s System

Direct CPV in B decays

CPV in Loop dominated B Decays

CPV in charm decays

So a large β_s or semileptonic asymmetry is a sign of NP

Measurements at Tevatron & LHC

 $A\Gamma \& \phi_s$ from time-dependent angular analysis of $B^0_s \rightarrow J/\psi \phi$

 $>a_{sl}$ from inclusive or like-sign Dimuon rate asymmetry

Measurement of B_s mixing phase $(\phi_s^{J/\psi\phi})$

Using time-dependent angular analysis of $B_s \rightarrow J/\psi \phi$ with flavor tagging

Both results are consistent with SM But a large mixing phase ($\phi_s^{J/\psi\phi}$) is not excluded

4υπ

Measurement of B_s mixing phase ($\phi_s^{J/\psi\phi}$)-LHC

LHCb \$\operascripts_{s}^{J/\u03c6}\u03c6 is consistent with SM & Tevatron results Moving towards a precision measurement Future measurements can also use Bs→J/\u03c6f - with no need for angular analyses LHCb Results with x10 statistics expected soon.

Measurement of like-sign Di-muon Asymmetry

B. Hoeneisen D0 results: the basic observation $A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = (+0.126 \pm 0.041)\%$ Both related to A_{SL} $A = KA^{b}_{sl} + A_{bkg}$ $a = kA^{b}_{sl} + a_{bkg}$ The tasks is to determine A_{bkg}, a_{bkg} & related asymmetries and K and k

Using data: they determine the fraction of various components of background sources and the related charge asymmetry of each component

	Source	inclusive muon	like-sign dimuon
Background has	$(f_K a_K \text{ or } F_K A_K) \times 10^2$	$+0.776 \pm 0.021$	$+0.633 \pm 0.031$
significant charge	$(f_\pi a_\pi$ or $F_\pi A_\pi) imes 10^2$	$+0.007 \pm 0.027$	-0.002 ± 0.023
asymmetry- dominated by kaons- determined and	$(f_p a_p ext{ or } F_p A_p) imes 10^2$	-0.014 ± 0.022	-0.016 ± 0.019
	$[(1-f_{\sf bkg})\delta { m or} \ (2-F_{\sf bkg})\Delta] imes 10^2$	-0.047 ± 0.012	-0.212 ± 0.030
checked with data &	$(a_{\rm bkg} \text{ or } A_{\rm bkg}) imes 10^2$	$+0.722 \pm 0.042$	$+0.402 \pm 0.053$
Checked with duru d	$(a \text{ or } A) \times 10^2$	$+0.688 \pm 0.002$	$+0.126 \pm 0.041$
with MC	$[(a - a_{\sf bkg}) ext{ or } (A - A_{\sf bkg})] imes 10^2$	-0.034 ± 0.042	-0.276 ± 0.067

D0 measurement of Charge Asymmetry in Leptons (A_{sl}^{b})

 $A_{sl}^{b} = (-0.787 \pm 0.172 \pm 0.093)\%$ $A_{sl}^{b}(SM) = C_{d}a_{sl}^{d} + C_{s}a_{sl}^{s} = (-0.028_{-0.006}^{+0.005})\%$

"Tension" with SM is at 3.9 σ

If confirmed, this represent a clear signal for NP A task for CDF(?), and LHCb also with precise ϕ_s measurements

See J. Zupan's talk for theoretical implications- "consistent with NP CPV"

The result is consistent with current ϕ_s measurements

-

D0 measurement of Charge Asymmetry in Leptons (A_{sl}^{b})

•Does the result survive a different level of "B enrichment"? •Is this a B⁰_s effect?

•They apply an impact parameter (IP) cut and divide the data into two parts: IP>120 μ m (B_d rich) and IP<120 μ m (B_s rich) - Perform the same analysis & determine a^d_{sl} and a^s_{sl}

4

$$a_{sl}^d = (-0.12 \pm 0.52)\%$$

 $a_{sl}^s = (-1.81 \pm 1.06)\%$

They also extend the analysis to different IP thresholds & find consistent results

Quantity		muon IP threshold	
	$50 \ \mu m$	$80 \ \mu m$	$120 \ \mu m$
$a_{\rm sl}^d \times 10^2$	$+1.51 \pm 0.93$	$+0.42 \pm 0.68$	-0.12 ± 0.52
$a_{ m sl}^s imes 10^2$	-4.76 ± 1.79	-2.57 ± 1.34	-1.81 ± 1.06
ρ_{ds}	-0.912	-0.857	-0.799

But now there is some small cause for concern: The asymmetry tends to increase with lowering IP threshold- more pronounced at lower IPdominated by BKG tracks. Further study of IP effect is needed-

Direct CPV (cont)

First LHCb results- much more to come soon

P. Sail & M. Artuso

LHCB MEASUREMENTS (320 pb^{-1})

- $A_{CP}(B^0 \rightarrow K^+\pi^-) = -0.088 \pm 0.011 \text{ (stat)} \pm 0.008 \text{ (syst)}$
- $A_{CP}(B_s^0 \to \pi^+ K^-) = 0.27 \pm 0.08 \text{ (stat)} \pm 0.02 \text{ (syst)}$

Direct CP Violation in B decays- the " $K\pi$ " puzzle

• The measurement: $A_{CP}(B^+ \to K^+\pi^0) - A_{CP}(B^0 \to K^+\pi^-) = 0.123 \pm 0.020$

A >5 σ deviation from simple expectation- assuming dominance of tree and penguin diagrams $A_{cn}(B^0 \rightarrow K^+\pi^-) \approx A_{cn}(B^+ \rightarrow K^+\pi^0)$

Possible explanation:

•A more complex SM background (enhanced color suppressed, EW penguins, annihilation.)
•New Physics

Before invoking NP- a more accurate test of SM processes is in order – proposed sum rule by (Gronau, Rosner) & (Atwood, Soni), also suggestions by Lipkin,..

$$A_{cp}(K^{+}\pi^{-}) + A_{cp}(K^{0}\pi^{+}) \frac{B(K^{0}\pi^{+})}{B(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}} \approx A_{cp}(K^{+}\pi^{0}) \frac{2B(K^{+}\pi^{0})}{B(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}} + A_{cp}(K^{0}\pi^{0}) \frac{2B(K^{0}\pi^{0})}{B(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}}$$

$$A_{cp}(B^{+} \rightarrow K^{+}\pi^{0}) = +0.038 \pm 0.018 \qquad A_{cp}(B^{+} \rightarrow K^{0}\pi^{+}) = -0.009 \pm 0.025$$

$$A_{cp}(B^{0} \rightarrow K^{+}\pi^{-}) = -0.085 \pm 0.010 \qquad A_{cp}(B^{0} \rightarrow K^{0}\pi^{0}) = +0.01 \pm 0.10$$

- The current data satisfies the sum rule
- The precision of the test is limited by measurement of CPV in $B^0 \rightarrow K^0 \pi^0$
- Requires the statistics of Super Flavor experiments to disentangle NP & SM.

Time-dependent CPV in gluonic penguins

>In SM: $Sin2\beta_{penguin} \sim sin2\beta$ (Subject to channel dependent QCD corrections)

>Looking for a $\Delta S=Sin2\beta_{penguin}-sin2\beta$, sensitive to New Physics effects at loop level.

> To be a useful test Must understand SM predictions for ΔS - requires:

Reliable QCD calculations
Comprehensive measurements of many channels and the use of symmetries to relate them.

•The current "naïve average" is consistent with SM.

Measurement of Sin2 β_{penguin}

The dominant couplings are from the 1st two generations, involving the real part of the CKM matrix (no relative CPV phase)

Any CPV ~ $O(|V_{ub}V_{cb}^*/V_{us}V_{cs}^*|)$ ~ 10⁻³ or less

Any sizeable CPV in the charm sector- if observedindicates the presence of New Physics

CP Violation in the Charm System

HFAG-charm CHARM 2010

1.5

0.5

CPV allowed

- > Mixing in D⁰ system is now established via 30 observables:
- > Time evolution of doubly-cabibbo-suppressed D⁰->K+ π -
- Lifetime difference in CP-odd and CP-even modes
- > Dalitz analysis of D⁰->K_s $\pi^+\pi^-$ K_sK⁺K⁻, K⁺ $\pi^-\pi^0$, K⁺ $\pi^-\pi^+\pi^-$, ...
- > Simultaneously fit for indirect CPV:

Direct CPV in the charm system

Search for direct CPV in charm decays performed by CLEO, FOCUS, E791, BaBar, Belle, CDF & LHCb

Measure:

$$\mathbf{h}_{cp} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})}$$

The full list can be found at HFAG:

http://www.slac.stanford.edu/xorg/hfag/charm/cp_asym/

The most sent Channel A_{cp} (% $D^0 \rightarrow \pi^+ \pi^-$ $D^0 \rightarrow K^0_s \pi^0$ $D^0 \rightarrow K^+ K^-$	sitive channels: 5) +0.20± 0.22 -0.27± 0.21 -0.23± 0.17	No evidence found for Direct CPV in charm decays Sensitivities in some channels approaching ~10 ⁻³
$D^+ \rightarrow K^0_{s} \pi^+$ $D^+ \rightarrow K^0_{s} K^+$	-0.52 ± 0.14 -0.09 ± 0.63	>35 Expect A _{cp} ~ -0.33% induced by indirect CPV in K ⁰
$D_{s}^{+} \rightarrow K_{s}^{0} K^{+}$ $D_{s}^{+} \rightarrow K_{s}^{0} \pi^{+}$	$+0.28 \pm 0.41$ -6.53 ± 2.46	Hadron colliders are now big players in charm CPV – results from CDF & LHCb

Outlook

For order of magnitude improvement in precision of CPV observables

The dream for the CKM parameters

•<u>This is an enormous undertaking for both experiment & theory:</u> To reach this goal, accuracy of the theoretical inputs must match the experimental precision:

Improved Lattice QCD calculations of decay constants & form factors are needed for B mixing parameters, leptonic decays, |V_{ub}|, |V_{cb}|,..

The experience of B factories shows that comprehensive measurements of a broad set of channels -connected through known symmetries, e.g. Isospin, SU(3) etc- are needed to control theoretical uncertainties.

Next generation of Flavor/CPV Experiments

At LHC:

- LHCb: At L~2x10³²/cm²/s Expect ~5/fb by 2018 Incoming rate ~10¹² B's/Yr(2/fb) +trigger $B_d, B_u, B_s, B_c, \Lambda_b,...$ Excellent early results has
 - already appeared
- CMS and ATLAS players in
 B->μμ not so much in CPV
- LHCb upgrade (in planning/ design)- aiming for 2018
 To operate at L~10³³/cm²/s expect ~10/fb/year

- <u>In design: (Super B factories)</u>
- Asymmetric energy e⁺ + e⁻ colliders to operate in the Y(4S) region as well as in the charm threshold region.
 - SuperB, Italy
 - Super KEKB in Japan
- At L ~10³⁶ /cm²/s
 Aiming for a data set of ~ 50 to 75/ab in 5 yrs of running.
 - ~10¹¹ B decays
 - ~10¹¹ tau decays
 - $\sim 10^{11}$ charm decays
 - For comparison
 - →BaBar+Belle (~1.4/ab) : ~10⁹ B's

Summary

- Uncovering new sources of CP Violation remains a major task for the field:
 - Experimental data are still consistent with the Standard Model as the dominant source of CP Violation:
 - Signs of deviations from the SM are emerging, but these results need confirmation- some will be resolved with data from LHC.
 - Any New Physics is expected to contain new sources of CPV. The absence of significant evidence for CPV beyond SM is already posing a problem for NP at the TeV scale.
 - A program of precision measurements of the CKM parameters and loop dominated processes will be a major companion to the NP searches at the LHC.