Hadron Spectroscopy

Adam Szczepaniak Indiana University

- Hadrons, QCD and the new states of matter
- Recent results: experiment, theory and phenomenology and connection between them
Too many results: focus on "-onia"
- Challenges:Amplitude analysis

"The bootstrap manifesto"

"The bootstrap manifesto"

$$
A(s, t)=\frac{\Gamma(-\alpha(s)) \Gamma(-\alpha(t))}{\Gamma(-\alpha(t)-\alpha(s))}
$$

reviews of modern physics
S-Matrix Theory of Strong Interactions without Elementary Particles* ${ }^{*}$

Department of Physics and Lawrence Radiation Laboratory, Unieersity of California, Berkeley, California
"The bootstrap manifesto"

Polyakov,Wilson: loop theory
AdS/CFT

$$
A(s, t)=\frac{\Gamma(-\alpha(s)) \Gamma(-\alpha(t))}{\Gamma(-\alpha(t)-\alpha(s))}
$$

AdS/CFT

S-Matrix Theory of Strong Interactions without Elementary Particles* ${ }^{*}$

Geoffrey F. Chew
"The bootstrap manifesto"

1. INTRODUCTION

TN this paper I present an indecently optimistic view of strong interaction theory. My belief is that a major breakthrough has occurred and that within a relatively short period we are going to achieve a depth of understanding of strong interactions that a few years ago I, at least, did not expect to see within my lifetime. I know that few of you will be convinced by the arguments given here, buti would be masking nly feelings if I were to employ a conventionally cautious attitude in this talk. I am bursting with excitement, as are a number of other theorists in this game.

I present my view of the current situation entirely in terms of the analytically continued S matrix, because there is no other framework that I understand for strong interactions. My oldest and dearest friends

$$
A(s, t)=\frac{\Gamma(-\alpha(s)) \Gamma(-\alpha(t))}{\Gamma(-\alpha(t)-\alpha(s))}
$$

- QED (at the atomic scale)
weakly interacting photons + non-relativistic charges

Vacuum fields: Coulomb potential + (de-coupled) harmonic oscillators

Conventional bound states (atoms): radiation coupled $\left|H>=\left|e^{+} p>\right| \gamma\right\rangle$

- QCD (at the nuclear scale)
self-interacting gluons with strong coupling + relativistic (light) or non-relativistic (c,b) quarks

Vacuum fields: Confined Coulomb potential + (coupled) magnetic charges (monopoles,vortices)

- QED (at the atomic scale)
weakly interacting photons + non-relativistic charges

Vacuum fields: Coulomb potential + (de-coupled) harmonic oscillators

New states of matter (hadrons): radiation strongly coupled

$$
\left|H>=\Sigma_{i}\right| q_{i} g_{i}>
$$

Conventional bound states (atoms): radiation coupled $\left|H>=\left|e^{+} p>\right| \gamma\right\rangle$

Confined Coulomb + excited glue (quark model template)

Features of the Hadron Spectrum: Charmonium

Gquark model template
\square hybrid candidate $\times(4260)$

- molecular (D^{*}) candidate $\mathrm{X}(3872)$

Dossible extra states M=3900-4200
■ charged charmonia $\mathrm{M}=4000-4500$ (aka tetraquarks)
ground state flux tube dominates
sign of excited glue
residual hadronic forces

Christopher Hearty (BaBar)
(Hadron Spectroscopy, Friday)

M

X(3872) discovered by Belle in $J / \Psi \pi^{+} \pi^{-}(2003)$ confirmed by CDF other modes from Bell, BaBar
mass between D*D and DD π thresholds $\mathrm{O}(\mathrm{MeV})$ width (IMeV)

* $\begin{aligned} & \\ & \text { if } J^{P C}=1^{++}\end{aligned}$then S-wave $D^{*} D$ molecule (several fm)?
* 2^{-+}(BaBar, 2010) QM ?

P.del Amo Sanchez et al., PRD82, I32002 (2010)

X $\mathbf{X}(3872)$ discovered by Belle in $\mathrm{J} / \Psi \pi^{+} \pi^{-}(2003)$ confirmed by CDF other modes from Bell, BaBar
mass between D*D and DDTt thresholds $\mathrm{O}(\mathrm{MeV})$ width (IMeV)

* 的 $\mathrm{J}^{\mathrm{PC}}=1^{++}$then S-wave D^{*} D molecule (several fm)?
* 2^{-+}(BaBar, 2010) QM ?
* need radiative decays of $X, 2 P$ and ID

P.del Amo Sanchez et al., PRD82, I32002 (2010)

$$
\mathcal{B}\left(B^{+} \rightarrow K^{+} X(3872) \mathcal{B}(X(3872) \rightarrow R \gamma), 10^{-6}\right.
$$

$J / \psi \quad 1.78_{-0.44}^{+0.48} \pm 0.12$
$2.8 \pm 0.8 \pm 0.1$
ψ^{\prime}
<3.45
$9.5 \pm 2.7 \pm 0.6$
small cc component?
The jury is still out
if molecule then maybe closely related to the $f_{0}(980)$ in KK
precision strong phases from weak D-decays
$\mathrm{D}^{+}{ }_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{+}($Babar 201I) $)$
$\overline{\sqrt{4 \pi}}\left\langle Y_{0}^{0}\right\rangle=|S|^{2}+|P|^{2}$
$\sqrt{4 \pi}\left\langle Y_{2}^{0}\right\rangle=\frac{2}{\sqrt{5}}|P|^{2}$,
$\sqrt{4 \pi}\left\langle Y_{1}^{0}\right\rangle=2|S||P| \cos \phi_{S P}$
slightly "tilted" P-wave distribution due to S -wave interference

$\mathrm{B}(B \rightarrow X(3915) K) \times \mathrm{B}(X(3915) \rightarrow J / \psi \omega)=(7.1 \pm 1.3 \pm 3.1) \times 10^{-5}$.

$M=3900-4200$
range
not seen in Belle (and possible Y(4275)
$\mathrm{B}\left(B^{ \pm} \rightarrow X(3915) K_{ \pm}\right) \times \mathrm{B}(X(3915) \rightarrow J / \psi \omega)=(3.0+0.7-0.6+0.5-0.3) \times 10-5$,

- $\mathrm{X}^{ \pm}$(4430) Belle (2009) $\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-}\left(\Psi^{\prime} \Pi^{+}\right), \mathrm{B}^{+} \rightarrow \mathrm{K}_{\mathrm{s}}\left(\Psi^{\prime} \Pi^{+}\right)$ not seen in BaBar (also in J/ $\Psi \pi^{-}$)

- $\mathrm{X}^{ \pm}$(4430) Belle (2009) $\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-}\left(\Psi^{\prime} \pi^{+}\right), \mathrm{B}^{+} \rightarrow \mathrm{K}^{0}{ }_{s}\left(\Psi^{\prime} \pi^{+}\right)$ not seen in BaBar (also in J/ $\Psi \pi^{-}$)

- $\mathrm{X}^{ \pm}$(4430) Belle (2009) $\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-}\left(\Psi^{\prime} \Pi^{+}\right), \mathrm{B}^{+} \rightarrow \mathrm{K}_{\mathrm{s}}\left(\Psi^{\prime} \Pi^{+}\right)$ not seen in BaBar (also in J/ $\Psi \pi^{-}$)

- $\mathrm{X}^{ \pm}$(4430) Belle (2009) $\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-}\left(\Psi^{\prime} \Pi^{+}\right), \mathrm{B}^{+} \rightarrow \mathrm{K}_{\mathrm{s}}\left(\Psi^{\prime} \Pi^{+}\right)$
not seen in BaBar (also in J/ $\Psi \pi^{-}$)

- $\mathrm{X}^{+}(4050,4250)$ Belle $(2009) \overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-}\left(\mathrm{X}_{\mathrm{c}} \Pi^{+}\right)$

- $\mathrm{X}^{+}(4050,4250)$ Belle $(2009) \overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-}\left(\mathrm{X}_{\mathrm{c}} \Pi^{+}\right)$

- $\mathrm{X}^{+}(4050,4250)$ Belle $(2009) \overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-}\left(\mathrm{X}_{\mathrm{c}} \Pi^{+}\right)$

- $\mathrm{X}^{+}(4050,4250)$ Belle $(2009) \overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-}\left(\mathrm{X}_{\mathrm{cI}} \Pi^{+}\right)$

- $\mathrm{X}^{+}(4050,4250)$ Belle $(2009) \overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-}\left(\mathrm{X}_{\mathrm{c}} \mid \Pi^{+}\right)$

$M\left(\pi^{+} X_{c 1}\right)$

$Z_{b}(10610), Z_{b}(10650)$
Belle (201I)

$A\left(s_{1}, s_{2}\right)=\left|B W_{Z}\left(s_{1}\right)+B W_{Z}\left(s_{2}\right)+A_{N R}+A_{f_{0}}(980)+A_{f_{2}}(1275)\right|^{2}$

Physical (coherent) backgrounds are important

Role of hadronic backgrounds

BESII proposed a new $\mathrm{J}=\mathrm{I}=\mathrm{I},(\rho-$ like $)$ broad resonance strongly coupled to KK
$\mathrm{J} / \Psi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \Pi^{0}$

$K *(890)$ reflection

Role of hadronic backgrounds

BESII proposed a new $\mathrm{J}=\mathrm{I}=\mathrm{I},(\rho$-like $)$ broad resonance strongly coupled to KK
$\mathrm{J} / \Psi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \Pi^{0}$

missing strength at " X " location

K*(890) reflection

Role of hadronic backgrounds

BESII proposed a new $\mathrm{J}=\mathrm{I}=\mathrm{I},(\rho$-like) broad resonance strongly coupled to KK
$\mathrm{J} / \Psi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \Pi^{0}$

unitarity demands other channel most likely $\pi \Pi \rightarrow K \bar{K}$

missing strength at " X " location

Role of hadronic backgrounds

BESII proposed a new $\mathrm{J}=\mathrm{I}=\mathrm{I},(\rho$-like) broad resonance strongly coupled to KK
$J / \Psi \rightarrow K^{+} K^{-} \Pi^{0}$

0202020
missing strength at " X " location

the virtual $\pi \pi$ channel in $J / \psi \rightarrow(\pi \pi) \pi \rightarrow K K \pi$ may explain the " X "

[^0]

Mass 3π

$$
\pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p
$$

E852 2003
Full sample

evolution in statistics $\pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$

Graphics Processor

- Almost infinite floating-point power
- Fast communication with CPU
- Short latency

Amplitude Analysis: Major challenge

I Amplitude extraction is model dependent
2. Analytical continuation to complex energy plane is needed to extract resonance parameters
3. Finally connection between S-matrix poles and QCD: lattice, models needs to be made

I. precision data
$\mathrm{I}=\mathrm{J}=\mathbf{0}$

800825850875900925950

FIG. 1: Modulus of amplitudes in different meson-meson channels for $N_{c}=3$ (thick line) $N_{c}=5$ (thin continuous line) and $N_{c}=10$ (thin dotted line), scaled at.Pela $\quad 770 \mathrm{MeV}$
3."microscopic" study: Nc dependence
2. dispersion relation + chiral constraints give precise determination of the σ resonance
$(452 \pm 13)-i(259 \pm 16)$
$(448 \pm 43)-i(266 \pm 43)$
$\left(455 \pm 6_{-13}^{+31}\right)-i\left(556 \pm 12_{-86}^{+68}\right)$
$\left(463 \pm 6_{-17}^{+31}\right)-i\left(518 \pm 12_{-68}^{+66}\right)$
$\left(552_{-106}^{+84}\right)-i\left(232_{-72}^{+81}\right)$
$(466 \pm 18)-i(223 \pm 28)$
$(472 \pm 30)-i(271 \pm 30)$
$(484 \pm 17)-i(255 \pm 10)$

Hunting for the hybrid meson

Y(4260) discovered by BaBar in $\mathrm{J} / \Psi \pi^{+} \Pi^{-}(2005)$ confirmed by CLEO,Belle other modes from BaBar $J^{\mathrm{PC}}=1-\left(\right.$ from $\left.\mathrm{e}^{+} e^{-}\right)$width $\mathrm{O}(100 \mathrm{MeV})$

*'s possible $Y(4050)$ not confirmed in BaBar

* Theory favor: Hybrid
- new multiplets from lattice

J.Dudek et al. JLab
- new multiplets from lattice

J.Dudek et al. JLab
- new multiplets from lattice

* lowest quasi-gluon eigenstate in presence of static source has $J^{\mathrm{PC}}=1^{+-}$quantum numbers
(one unit of orbital angular momentum)

$$
\mathrm{P}_{\mathrm{g}}=\mathrm{I}^{+}
$$

C.Morningstar et al, G.Ball.

* lowest quasi-gluon eigenstate in presence of static source has $J^{\mathrm{PC}}=1^{+-}$quantum numbers
(one unit of orbital angular momentum)

$$
\mathrm{P}_{\mathrm{g}}=\mathrm{I}^{+}
$$

* hybrid "="

JPC glue

$1 \quad \mathrm{JCC}^{\mathrm{PC}} \mathrm{QQ}^{-}$
$1^{+-} \times 0_{S_{Q \bar{Q}}}^{-+}=1^{--}$
$1^{+-} \times 1_{S_{Q \bar{Q}}=1}^{-}=$

$$
0^{-+}, 1^{-+}, 2^{-+}
$$

From (variational) QCD in the Coulomb gauge
P.Guo, et al.
also from other models
J.Dudek, et al.

* lowest quasi-gluon eigenstate in presence of static source has $J^{\mathrm{PC}}=1^{+-}$quantum numbers
(one unit of orbital angular momentum)

$$
\mathrm{P}_{\mathrm{g}}=\mathrm{I}^{+}
$$

* hybrid "="

JPC glue

JPC QQ

$1^{+-} \times 1_{S_{Q \bar{Q}}=1}^{--}=$

$$
0^{-+}, 1^{-+}, 2^{-+}
$$

ss analogue? $\mathrm{Y}(2 \mid 75)$
David Muller (BaBar)
(Hadron Spectroscopy, Friday)
From (variational)
QCD in the Coulomb gauge
P.Guo, et al.
also from other models
J.Dudek, et al.

$$
\begin{array}{lll}
\pi^{-} p \rightarrow \eta \pi^{-} p & M=1370 \pm 16_{-30}^{+50} \mathrm{MeV} / \mathrm{c}^{2} & \text { search for } \\
& \Gamma=385 \pm 40_{-105}^{+65} \mathrm{MeV} / \mathrm{c}^{2} & n \bar{n} \text { hybrid } \pi_{1}(1600)
\end{array}
$$

No consistent B-W interpretation possible but a weak $\eta \pi$ interaction exists and can reproduce the exotic wave

$$
\begin{array}{ll}
\pi^{-} p \rightarrow \eta \pi^{-} \mathrm{p} & \mathrm{M}=1370 \pm 16_{-30}^{+50} \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma=385 \pm 40_{-105}^{+5} \mathrm{MeV} / \mathrm{c}^{2}
\end{array}
$$

search for $n \bar{n}$ hybrid $\pi_{1}(1600)$

$$
\pi^{-} p \rightarrow \eta \pi^{0} n
$$

No consistent B-W interpretation possible but a weak $\eta \pi$ interaction exists and can reproduce the exotic wave

$$
\pi^{-} p \rightarrow \eta^{\prime} \pi^{-} p
$$

$$
\begin{aligned}
& \mathrm{M}=1597 \pm 10_{-10}^{+45} \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma=340 \pm 40_{-50}^{+50} \mathrm{MeV} / \mathrm{c}^{2}
\end{aligned}
$$

[^0]: P.Guo et al. (IU 201 I)

