Hadron Spectroscopy

Adam Szczepaniak Indiana University

Hadrons, QCD and the new states of matter

 Recent results: experiment, theory and phenomenology and connection between them Too many results: focus on "-onia"

Challenges: Amplitude analysis

weakly interacting photons + non-relativistic charges

Vacuum fields : Coulomb potential + (de-coupled) harmonic oscillators

Conventional bound states (atoms): radiation coupled $|H\rangle = |e^+ p\rangle|\gamma\rangle$

QCD (at the nuclear scale)

self-interacting gluons with strong coupling + relativistic (light) or non-relativistic (c,b) quarks

Vacuum fields : Confined Coulomb potential + (coupled) magnetic charges (monopoles,vortices)

New states of matter (hadrons): radiation strongly coupled

 $|H\rangle = \Sigma_i |q_i g_i\rangle$

Heavy quarkonia: Confined Coulomb + excited glue (quark model template)

QED (at the atomic scale)

weakly interacting photons + non-relativistic charges

Vacuum fields : Coulomb potential + (de-coupled) harmonic oscillators

Conventional bound states (atoms): radiation coupled $|H\rangle = |e^+ p\rangle|\gamma\rangle$

Features of the Hadron Spectrum: Charmonium

X(3872) discovered by Belle in J/ $\psi \pi^+\pi^-$ (2003) confirmed by CDF other modes from Bell,BaBar $X \rightarrow J/\psi \ \omega^*$ mass between D^*D and $DD\pi$ thresholds O(MeV) width (IMeV) Events/7.4 MeV/c² 0 5 01 51 c) MC S-wave MC P-wave ***** if J^{PC}=I⁺⁺ then S-wave D^{*}D molecule (several fm)? ***** 2⁻⁺ (BaBar, 2010) QM ? 0.76

P.del Amo Sanchez et al., PRD82, 132002 (2010)

0.74

(U) resonance

0.78

 $m_{3\pi}$ (GeV/c²)

(1) resonance

 $m_{3\pi}$ (GeV/c²)

• X[±] (4430) Belle (2009) $\overline{B}^0 \to K^-(\psi'\pi^+), B^+ \to K^0_s (\psi'\pi^+)$

not seen in BaBar (also in J/ ψ π ⁻)

• X[±] (4430) Belle (2009) $\overline{B}^0 \to K^-(\psi'\pi^+), B^+ \to K^0_s (\psi'\pi^+)$

not seen in BaBar (also in J/ $\psi \pi$ -)

Belle (2011)

 $A(s_1, s_2) = |BW_Z(s_1) + BW_Z(s_2) + A_{NR} + A_{f_0}(980) + A_{f_2}(1275)|^2$

Charged resonances in Dalitz plot analysis of $\Upsilon(5S)$ decays to $(\Upsilon(1S), \Upsilon(2S), \Upsilon(3S), h_b, h_b') \pi^+\pi^{-,}$

Physical (coherent) backgrounds are important

Role of hadronic backgrounds

Events/(40MeV/c²) g

0

1.5

BESII proposed a new J=I=I, (ρ -like)_ broad resonance strongly coupled to KK $J/\psi \rightarrow K^+K^-\pi^0$

Role of hadronic backgrounds

Events/(40MeV/c²) $\overset{2}{\otimes}$

BESII proposed a new J=I=I, (ρ -like) _ broad resonance strongly coupled to KK J/ $\psi \rightarrow K^+K^-\pi^0$

missing strength at "X" location

evolution in statistics $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

evolution in statistics $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$ V/c²) BNL (E852) ca 1995 (a) Aa_2 Graphics Processor Almost infinite floating-point power • Fast communication with CPU Short latency 10 s -×10⁶ a₂(1320) FORTRAN 96M events 0.6 -1 s --1 s -- 1 s -- 1 s -- 1 s -- 1 s -×150 Speedup $0.5 - a_1(1260)$ **GPUPWA** 0.4 COMPASS 2010 Sums on CPU π₂(1670) 0.3 preli O(10⁶/10MeV) 0.2 GPUPWA Sums on GPU 0.1 0 s 200000 400000 0 2 1 3 5 Number of Events Mass of $\pi^{-}\pi^{-}\pi^{+}$ System (GeV/c²)

Hunting for the hybrid meson

Y(4260) discovered by BaBar in J/ $\psi \pi^+\pi^-$ (2005) confirmed by CLEO,Belle other modes from BaBar J^{PC}=1⁻⁻ (from e⁺e⁻) width O(100MeV)

new multiplets from lattice

new multiplets from lattice

new multiplets from lattice

$$\pi^{-}p \rightarrow \eta\pi^{-}p$$

$M = 1370 \pm 16^{+50}_{-30} MeV / c^2$

 $\Gamma = 385 \pm 40^{+65}_{-105}$ MeV / c²

search for nn hybrid $\pi_1(1600)$

$$\pi^{-}p \rightarrow \eta \pi^{0}n$$

No consistent B-W interpretation possible but a weak $\eta\pi$ interaction exists and can reproduce the exotic wave

