

The CMS Collaboratior Speaker: Michael Luk

Generalities Motivation Constraints

 $t' \rightarrow tZ$

 $t' \rightarrow bW$

Selection I + jets

Reconstruct

Plots

2D Fits

Limit Calc.

 $\begin{array}{c} \text{Results} \\ t' \rightarrow bW \end{array}$

Comments

Search for Fourth Generation Quarks at CMS

The CMS Collaboration Speaker: Michael Luk¹

¹Department of Physics Brown University

DPF2011 - 09AUG11

General Information

The CMS Collaboration Speaker: Michael Luk

Constraints
Reconstruction

Event Mass

Plots 1D Fits 2D Fits

Limit Calc.

 $\begin{array}{c} \text{Results} \\ t' \rightarrow bW \end{array}$

Comments

Searches for fourth generation quarks at the CMS detector.

Analyses look at:

- ► $b' \rightarrow t + W$
- ► $t' \rightarrow t + Z$
- ► $t' \rightarrow b + W$

Assume:

- ▶ is strongly pair produced
- has mass greater than top quark
- decays promptly

Motivation

The CMS Collaboration Speaker: Michael Luk

Event Mass

Plots 1D Fits 2D Fits

Limit Calc.

 $\begin{array}{c} \mathsf{Results} \\ t' \to bW \end{array}$

Comments

Our searches are not limited to fourth generation chiral quarks - can be extended to BSM model with the same decay products.

- ► Natural extension of Standard Model: 3 → 4 fermion generations
- ► Is consistent with precision electroweak measurements
- Heavy top-like quark can resolve the naturalness problem (Higgs predicted to be light).

Constraints

The CMS Collaboratior Speaker: Michael Luk

Generalities Motivation Constraints $b' \rightarrow tW$ $t' \rightarrow tZ$ $t' \rightarrow bW$ Selection l + jets

Reconstructio

Event Mass

Plots 1D Fits

2D Fits

Limit Calc.

 $\begin{array}{c} \text{Results} \\ t' \rightarrow bW \end{array}$

Comments

Constraints on the pair produced b' mass:

• $m_{b'} > 2m_t + 2m_w$ favoured

CDF 'Search for New Bottomlike Quark Pair Decays $QQ \rightarrow (tW)(tW)$ in Same-Charge Dilepton Events', Phys. Rev. Lett. 104 (2010) 091801

 $m_{b'} > 375 GeV$ direct search (CDF arXiv:1101.5728)

Constraints on the pair produced t' mass:

• $m_{t'} > 358 GeV$ direct search

CDF conference note 10395, D0 arXiv:1104.4522

• $m_{t'} - m_{b'} < 50 \, GeV$ from precision electroweak measurements

(Kribs, PRD 76 075016 (2007) Eberhardt, Lenz, Rohrwild, PRD 82 095006 (2010))

Events

The CMS Collaboration Speaker: Michael Luk

 $\begin{array}{l} \begin{array}{l} \mbox{Generalities} \\ \mbox{Motivation} \\ \mbox{Constraints} \\ \mbox{b'} \rightarrow tW \\ \mbox{t'} \rightarrow tZ \\ \mbox{t'} \rightarrow bW \\ \mbox{Selection} \\ \mbox{I + jets} \\ \mbox{Event Yield} \\ \end{array}$

Reconstru Event Mass

Plots 1D Fits 2D Fits

Limit Calc.

 $\begin{array}{c} \text{Results} \\ t' \rightarrow bW \end{array}$

Comments

Final state of events:

 $b'ar{b'}
ightarrow tWtW
ightarrow bWWbWW$

- Ws decay to two same sign charged leptons or three isolated leptons (i.e. dilepton and trilepton - has small SM bg and large B.R.)
- $t'ar{t'}
 ightarrow tZtZ
 ightarrow bbWWZZ$:
 - Z → I⁺I[−] and one W decays to isolated lepton i.e. trilepton decay.
- $t'ar{t'} o bbWW$:
 - one W decays leptonically, the other hadronically i.e. 4 jets + lepton

$b'ar{b'} o tWtW o bWWbWW$

Relevant final state:

- ▶ 4/6 Jets from:
 - 1/2 $W \rightarrow qq$ (or not into jets as $W \rightarrow l\nu$)
 - 2 b-jets
- ▶ 3/2 visible leptons from:
 - 3/2 $W \rightarrow l \nu$

b' selections @34*ipb*

The CMS Collaboration Speaker: Michael Luk

Constraints			

Reconstructi Event Mass

1D Fits 2D Fits

Limit Calc. Model Parameter

 $\begin{array}{c} \mathsf{Results} \\ t' \to bW \end{array}$

Comments

- Likesigned dilepton (trilepton) events with less than four(two) jets discarded
- ► $|M_{I^+I^-} M_Z| < 10 GeV$ veto -suppresses SM Z decay.
- ► $S_T = \sum p_T(jets, leptons) + \not\!\!E_T > 350 GeV$ required

b' event yield @34ipb

The CMS Collaboration Speaker: Michael Luk

Generalities			
Motivation			
Constraints			
$b' \to tW$			
I + jets			
Event Yield			
Reconstruction			

Plots 1D Fits 2D Fits

Limit Calc. Model Parameters

 $\begin{array}{c} \mathsf{Results} \\ t' \to bW \end{array}$

Comments

Process	Cross section	ϵ [%]	Yield
$b'\bar{b}', M_{b'} = 300 \text{GeV}/c^2$	7.29 pb (NLO)	3.08	7.7
$b'\bar{b}', M_{b'} = 350 \text{ GeV}/c^2$	2.94 pb (NLO)	3.75	3.8
$b'\bar{b}', M_{b'} = 400 \text{GeV}/c^2$	1.30 pb (NLO)	3.99	1.8
$b'\bar{b}', M_{b'} = 450 \text{GeV}/c^2$	0.617 pb (NLO)	4.34	0.91
$b'\bar{b}', M_{b'} = 500 \text{GeV}/c^2$	0.310 pb (NLO)	4.58	0.49
tt + jets	1.9×10^2 pb (CMS)	4.1×10^{-3}	0.27
$t\bar{t} + W + jets$	0.144 pb (LO)	0.67	0.033
$t\bar{t} + Z + jets$	0.094 pb (LO)	0.50	0.016
W + jets	$3.0 \times 10^4 \text{ pb} (\text{CMS})$	$< 1.0 \times 10^{-5}$	< 0.11
Z + jets	$2.9 \times 10^{3} \text{ pb} (\text{CMS})$	$< 9.2 \times 10^{-5}$	< 0.09
WW	43 pb (NLO)	$< 8.2 \times 10^{-4}$	< 0.012
WZ	18 pb (NLO)	$< 8.1 \times 10^{-4}$	< 0.005
ZZ	5.9 pb (NLO)	3.0×10^{-3}	0.006
Same-sign WW + jj	0.15 pb (LO)	3.9×10^{-2}	0.002
Background sum	-	-	0.33
Data-driven background yield	-	-	0.32
Observed yield in data	-	-	0

b' limit setting @34ipb

 $t'\bar{t}'
ightarrow tZtZ
ightarrow bbWWZZ$

Constraints		
Event Yield		

Reconstructi

Plots 1D Fits 2D Fits

Limit Calc. Model Parameter

 $\begin{array}{c} \mathsf{Results} \\ t' \to bW \end{array}$

Comments

Relevant final state:

- ► ≥ 2 Jets from:
 - W
 ightarrow qq (not jet decay W
 ightarrow l
 u)
 - Z
 ightarrow q ar q (not jet decay Z
 ightarrow
 u
 u)
 - 2 b-jets
- 3 visible leptons from:
 - $Z \rightarrow I^+I^-$
 - $W \rightarrow I \nu$

$t' \rightarrow tZ$ Selection @191*ipb*

- Reconstructio
- 1D Fits 2D Fits
- Limit Calc.
- $\begin{array}{c} \text{Results} \\ t' \rightarrow bW \end{array}$
- Comments

- ▶ 60 < M_{I+I−} < 120GeV Z veto</p>
- ► Residual $S_T = \sum p_T(jets) + \sum p_T(lepton) > 80 GeV$ required

$t' \rightarrow tZ$ yield @191*ipb*

The CMS Collaboration Speaker: Michael Luk

Constraints		

I + jets Event Yield

Reconstruction Event Mass

1D Fits

Limit Calc. Model Paramete

 $\begin{array}{c} \text{Results} \\ t' \rightarrow bW \end{array}$

Comments

		Process	Cross-section (pb)	ϵ [%]	Yield
		$T\overline{T}, M(T) = 250 \text{ GeV}/c^2$	20.5 (NLO)	14.5 ± 3.0	30.4
		$T\overline{T}$, $M(T) = 300 \text{ GeV}/c^2$	7.29 (NLO)	24.6 ± 5.0	18.4
		$T\overline{T}$, $M(T) = 350 \text{ GeV}/c^2$	2.94 (NLO)	29.9 ± 6.8	8.99
		$T\overline{T}$, $M(T) = 400 \text{ GeV}/c^2$	1.30 (NLO)	30.3 ± 6.9	4.03
		$T\overline{T}$, $M(T) = 450 \text{ GeV}/c^2$	0.617 (NLO)	33.8 ± 7.7	2.13
		$T\overline{T}, M(T) = 500 \text{ GeV}/c^2$	0.310 (NLO)	34.4 ± 7.9	1.09
		$T\overline{T}, M(T) = 550 \text{ GeV}/c^2$	0.162 (NLO)	33.6 ± 7.9	0.56
	[$t\bar{t} + jets$	158 (CMS)	$(2.6 \pm 2.0) imes 10^{-4}$	0.08
		Z + jets	$2.9 imes 10^3$ (CMS)	$(6.3 \pm 5.4) imes 10^{-5}$	0.35
		WZ inclusive	18.0 (NLO)	$(3.3 \pm 0.5) imes 10^{-3}$	0.12
		ZZ inclusive	5.9 (NLO)	$(5.9 \pm 0.6) imes 10^{-3}$	0.07
n		$t\bar{t} + W + jet$	0.144 (LO)	$(1.3 \pm 1.3) imes 10^{-2}$	0.004
		$t\bar{t} + Z + jet$	0.094 (LO)	$(5.4 \pm 1.3) imes 10^{-1}$	0.10
		Expected background from simulated samples Background with two real leptons (data-driven) Background with three real leptons (simulated)			
	[
	Sum (estimated background)				0.73 ± 0.31
	Data (191 pb ⁻¹)				0

$t' \rightarrow tZ$ limits setting @191*ipb*

 $\begin{array}{c} \text{Results} \\ t' \rightarrow bW \end{array}$

$t'\bar{t'} ightarrow bWbW$

 $t' \to bW$

Selection I + jets Event Yield

Reconstruction Event Mass

1D Fits 2D Fits

Limit Calc. Model Parameters

 $\begin{array}{c} \mathsf{Results} \\ t' \to bW \end{array}$

Comments

Relevant final state:

- 4 Jets from:
 - 2 W → qq
 - 2 b-jets
- ▶ 1 visible lepton from:
 - $W \rightarrow I \nu$

t' ightarrow bW Event Reconstruction

The CMS Collaboration Speaker: Michael Luk

Generalities Motivation Constraints $b' \rightarrow tW$ $t' \rightarrow tZ$

Selection I + jets Event Yield

Reconstruction Event Mass

Plots 1D Fits 2D Fits

Limit Calc. Model Parameters

 $\begin{array}{c} \mathsf{Results} \\ t' \to bW \end{array}$

Comments

We use a kinematic fitter to 'fit' to mass constraints:

$$M(W_{had} \rightarrow q\bar{q}) = M_W = M(W_{lep} \rightarrow l\nu)$$
$$M(W + b) = M_{fit}$$

Unknowns:

- t' mass
- ν has p_T (calculated) and 2 $p_{//}$ solutions
- ▶ 4Jets from b, \bar{b}, W_{had} (4!/2 × 2 = 24 combos)

Then pick 'best' combination (currently min χ^2) that reconstructs the event.

Backgrounds:

- $t\bar{t}$ production irreducible
- single top production
- W+jets/Z+jets/diboson production
- multijets

The CMS Collaboration Speaker: Michael Luk

 $\begin{array}{l} \begin{array}{l} \text{Generalities} \\ {}^{\text{Motivation}} \\ \text{Constraints} \\ \end{array} \\ \begin{array}{l} b' \rightarrow tW \\ t' \rightarrow tZ \\ t' \rightarrow bW \end{array}$

Selection I + jets Event Yield

Reconstructio Event Mass

Plots 1D Fits 2D Fits

Limit Calc. Model Parameters

 $\frac{\text{Results}}{t' \rightarrow bW}$

Comments

Selection chosen to maximise $n_s/\sqrt{n_b}$ in accepted signal sample for a 400 *GeV t'*.

- primary vertex
 - |z| < 24cm, |r| < 2cm
- lepton
 - pT > 30/35/45GeV to match trigger threshold (30GeV for e)
 - pseudorapidity $|\eta| <$ 2.5 (2.1 for *e*)
 - impact paramter of matched track |dxy| < 0.02 cm, |dz| < 1 cm
 - missing $p_T > 20 GeV$
- at least 4 jets with
 - ho T > 120, 90, 35, 35GeV && $|\eta| <$ 2.4
 - Δ*R*(*I*, *jets*) = √(Δφ)² + (Δη)² < 0.3 veto avoids double counting leptonic jets
 - \geq 1 jet is btagged

The CMS Collaboration Speaker: Michael Luk

Event Yield

Reconstruction Event Mass

Plots 1D Fits

Limit Calc.

 $\begin{array}{c} \mathsf{Results} \\ t' \to bW \end{array}$

process	cross section	e+jets events	μ +jets events
L		$573 \ {\rm pb}^{-1}$	821 pb^{-1}
data		520	1054
$t\bar{t}$	158 pb	456 ± 91	907 ± 114
single t	33 pb	14.5 ± 3.5	30 ± 6
W+jets	$30 \ \mu b$	33.3 ± 8.2	106 ± 25
Z+jets	$2.9 \ \mu b$	4.5 ± 1.2	2.6 ± 2.6
WW, WZ, ZZ	67 pb		2.1 ± 0.6
multijets		2.5 ± 1.2	5.7 ± 5.5
total background		510 ± 103	1054 ± 145
CMS preliminary			

Selection Efficiencies of Signal

The CMS Collaboration Speaker: Michael Luk

Generalities Motivation Constraints $b' \rightarrow tW$ $t' \rightarrow tZ$

 $t' \rightarrow bW$

Selection

Event Yield

Reconstructio Event Mass

1D Fits 2D Fits

Limit Calc. Model Parameters

 $\frac{\text{Results}}{t' \to bW}$

Comments

process	cross section	$e\!+\!{\rm jets}$ eff.	$\mu{+}{\rm jets}$ eff.
$t'\bar{t'}$			
$m_{t'} = 350 \text{ GeV}$	3.20 pb	$3.7\pm0.4\%$	$4.5\pm0.3\%$
$m_{t'} = 400 \text{ GeV}$	1.41 pb	$4.3\pm0.4\%$	$5.2\pm0.4\%$
$m_{t'} = 450 \text{ GeV}$	0.66 pb	$4.8\pm0.4\%$	$5.6\pm0.4\%$
$m_{t'} = 500 \text{ GeV}$	0.33 pb	$5.0\pm0.4\%$	$5.8\pm0.4\%$

CMS simulation

M. Aliev et al 'HATHOR - HAdronic Top and Heavy quarks crOss section calculatoR', Comput. Phys. Commun 182(2011)1034 - 1046

The CMS Collaboration Speaker: Michael Luk

Generalities Motivation Constraints $b' \rightarrow tW$ $t' \rightarrow tZ$

 $t' \rightarrow bW$

Selection I + jets Event Yield

Reconstructio

Plots 1D Fits 2D Fits

Limit Calc. Model Parameters

 $\begin{array}{c} \mathsf{Results} \\ t' \to bW \end{array}$

Comments

Measurements:

- Lepton momentum
- Neutrino p_T
- Jet momentum

Unknowns:

z component of neutrino momentum

Constraints:

•
$$M(l\nu) = m(qq) = M_W$$

•
$$M(l\nu b) = m(qqb) = M_{t,t'}$$

Fit and minimise χ^2 - get one χ^2 value for each combination.

Using kinematic fit we reconstruct the fitted mass.

 tt
 tt
 is ackground is irreducible - but use mass to discriminate against t't
 i signal.

The CMS Collaboratior Speaker: Michael Luk

Constraints

Reconstruction Event Mass

1D Fits 2D Fits

Limit Calc. Model Parameter

 $\frac{\mathsf{Results}}{t' \to bW}$

Comments

Final state: $4Jets + l\nu$ but can have ISR,FSR etc. Number of ways jets can be assigned to partons:

no of jets	combinations	
4	12	
5	60	
6	180	

We take $Min\chi^2$ combination with:

• e + jets: try all 4-jet combs out of the leading 5 jets

µ + jets: use 4 leading jets. If 5th jet has highest b-tagging discriminant use it instead of 4th jet

Studied 4,5,6 leading jets - considering 5jets best (significant improvement).

$M_{fit} \& H_{fit}$: e + jets@573ipb & μ + jets@821ipb

The CMS Collaboration Speaker: Michael Luk

Constraints
Event Yield

PIOTS 1D Fits 2D Fits

Limit Calc.

 $\begin{array}{c} \text{Results} \\ t' \rightarrow bW \end{array}$

Comments

2D Plots - channel: e + jets

PIOTS 1D Fits 2D Fits

Limit Calc. Model Parameters

 $\begin{array}{c} \mathsf{Results} \\ t' \to {}^{bW} \end{array}$

Comments

Figure: e + jets 2D (HTvsMfit) plots using $\int \mathcal{L} = 573 pb^{-1}$ data.

2D Plots - channel: $\mu + jets$

Constraints

Event Mass

Plots 1D Fits 2D Fits

Limit Calc. Model Parameter

 $\begin{array}{c} \mathsf{Results} \\ t' \to bW \end{array}$

Comments

Figure: $\mu + jets$ 2D (HTvsMfit) plots using $\int \mathcal{L} = 821 p b^{-1}$ data.

Limit Computation

The CMS Collaboration Speaker: Michael Luk

Generalities Motivation Constraints $b' \rightarrow tW$ $t' \rightarrow tZ$ $t' \rightarrow bW$ Selection l + iets

Event Yield

Event

Plots 1D Fits 2D Fits

Limit Calc. Model Parameters

 $\begin{array}{c} \text{Results} \\ t' \rightarrow bW \end{array}$

Comments

- compare observed distribution to predicted dist. from MC simulation of signal and background
- use
 - m_{fit} = reconstructed mass from kinematic fitter
 - *H*_T = sum of transverse energies of reconstructed objects
- Each bin is then compared to data by limit calculator HistFactory.

The model likelihood is defined by:

The CMS Collaboration Speaker: Michael Luk

Generalities Motivation Constraints $b' \rightarrow tW$ $t' \rightarrow tZ$ $t' \rightarrow bW$

Selection I + jets Event Yield

Reconstructio Event Mass

1D Fits 2D Fits

Limit Calc. Model Parameter

 $\begin{array}{c} \mathsf{Results} \\ t' \to bW \end{array}$

Comments

Nuisance Parameters:

- ▶ $\sigma_{t\bar{t}}$ constrained to CMS measured value of 158*pb* ± 11%
- N^{e,µ}_{ewk} number of other background events (constrained to prediction with 50% precision)
- α_{jes} jet energy scale calibration. This affects shape and norm of dist. Distributions are determined for the nominal jes and ±1σ variations. Intermediate are obtained by vertical morphing.
- ▶ $\epsilon_{e,\mu}$ selection efficiency for e/μ events constrained to 3%
- ▶ *ϵ_b* btagging eff 5%
- ▶ $\int \mathcal{L}$ uncertainty ±6%

Limit Computation -CLs

The CMS Collaboration Speaker: Michael Luk

- Generalities Motivation Constraints $b' \rightarrow tW$ $t' \rightarrow tZ$
- $t' \rightarrow bW$
- Selection I + jets Event Yield
- Reconstructio Event Mass
- Plots 1D Fits 2D Fits

Limit Calc. Model Parameter

 $\begin{array}{c} \mathsf{Results} \\ t' \to bW \end{array}$

Comments

- ▶ for each *t*′ mass value perform two fits:
 - maximise likelihood wrt parameters (μ , { α })
 - background-only hypothesis ($\mu = 0$) $\rightarrow L_b$
 - signal + background hypothesis $\rightarrow L_{s+b}$
- likelihood ratio $L = L_{s+b}/L_b$
- prob for L > L_{obs}
 - for background only $ightarrow \textit{CL}_{b}$
 - for signal+background $\rightarrow CL_{s+b}$ (depends on signal cross section)
- ▶ the 95% CL limit is the signal cross section for which:

$$1 - \frac{CL_{s+b}}{CL_b} = 1 - CL_s = 0.95$$
(1)

Expected limit is determined using pseudoexperiments.

Results - channel: *e* + *jets*@573*ipb*

The CMS Collaboratic Speaker: Michael Lu

 $\begin{array}{l} \begin{array}{c} \text{Generalitie} \\ \text{Motivation} \\ \text{Constraints} \\ b' \rightarrow tW \\ t' \rightarrow tZ \\ t' \rightarrow bW \end{array}$

Selection I + jets Event Yield

Reconstructi Event Mass

1D Fits 2D Fits

Limit Calc. Model Parameter

 $\begin{array}{c} \text{Results} \\ t' \to bW \end{array}$

Comments

observed limit: $m_{t'}$ > 431*GeV*@95%*CL* (expected 424*GeV*)

Results - channel: $\mu + jets@821ipb$

Generalities Motivation

 $b \rightarrow tW$ $t' \rightarrow tZ$ $t' \rightarrow bW$

Selection I + jets Event Yield

Reconstruction

1D Fits 2D Fits

Limit Calc. Model Parameter

 $\begin{array}{c} \text{Results} \\ t' \to bW \end{array}$

Comments

observed limit: $m_{t'} > 422 GeV@95\%CL$ (expected 435 GeV)

Results - channel: *combined* for e + iets@573ibb and $\mu + iets@821ibb$

Summary

The CMS Collaboration Speaker: Michael Luk

- Generalities Motivation Constraints $b' \rightarrow tW$
- $t' \rightarrow tZ$
- $t' \to bW$
- Selection / + jets Event Yield
- Reconstructio
- Plots 1D Fits 2D Fits

Limit Calc. Model Parameter

 $\begin{array}{c} \mathsf{Results} \\ t' \to bW \end{array}$

Comments

- Searched for pair produced $b' \rightarrow tW$ in trilepton channel.
 - used 34*pb*⁻¹
 - $m_{b'} > 361 GeV$ observed limit with 95% CL
- Searched for pair produced $t' \rightarrow tZ$ in dilepton and trilepton channel.
 - used 191*pb*⁻¹
 - $m_{t'} > 417 GeV$ observed limit with 95% CL
- Searched for $t' \rightarrow bW$ pair production in the lepton+jets channel
 - assumed strong pair production
 - exclusive decay $t' \rightarrow Wb$
 - used 573 pb^{-1} in e + jets and 821 pb^{-1} in $\mu + jets$ channel
 - *m*_{t'} > 450 *GeV* observed limit with 95% CL
- t' limits are best in the world (b' limit to be updated soon). \rightarrow no excess over SM seen.