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QCD phase diagram (a sketch)
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Models (and lattice) suggest the transition becomes 1st order at some µB .

Can we observe the critical point in heavy ion collisions, and how?
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Critical point(s) in known liquids

Most liquids have a critical point (seen, e.g., by critical opalescence).

Water:

Does QCD “perfect liquid” have one?
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What do we need to discover the critical point?
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Experiments: RHIC, NA61/SPS, FAIR/GSI, NICA.

Better lattice predictions, with controllable systematics.

Sensitive experimental signatures.
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Critical fluctuations: theory
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Consider an observable such as,
e.g., σV =

∫
V σ, where σ ∼ ψ̄ψ.

Ω(σV )

large equilibrium fluctuations

Einstein, 1910:

P (σV ) ∼ number

i.e., eS, or e−Ω/T
of states with that σV

Why does CP defy the central limit theorem?
Because, correlation length ξ → ∞. This is a collective phenomenon.
The magnitude of fluctuations 〈σ2

V 〉 ∼ ξ2.
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Fluctuation signatures

Experiments measure multiplicities Nπ, Np, . . . ,
mean pT , etc.

These quantities fluctuate event-by-event.

Fluctuation magnitude is quantified by e.g.,
〈(δN)2〉,〈(δpT )2〉.

What is the magnitude of these fluctuations
near the QCD C.P.? (Rajagopal-Shuryak-MS, 1998)
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Universality tells us how it grows at the critical point: 〈(δN)2〉 ∼ ξ2.

Magnitude of ξ is limited < O(2–3 fm) (Berdnikov-Rajagopal).

“Shape” of the fluctuations can be measured: non-Gaussian moments.
As ξ → ∞ fluctuations become less Gaussian.

Higher cumulants show even stronger dependence on ξ
(PRL 102:032301,2009):

〈(δN)3〉 ∼ ξ4.5, 〈(δN)4〉 − 3〈(δN)2〉2 ∼ ξ7

which makes them more sensitive signatures of the critical point.
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Higher moments (cumulants) andξ
Consider probability distribution for the order-parameter field:

P [σ] ∼ exp {−Ω[σ]/T} ,

Ω =

Z

d3x

»

1

2
(∇σ)2 +

m2
σ

2
σ2 +

λ3

3
σ3 +

λ4

4
σ4 + . . .

–

. ⇒ ξ = m−1
σ

Moments (connected) of q = 0 mode σV ≡
R

d3x σ(x):

κ2 = 〈σ2
V 〉 = V T ξ2 ; κ3 = 〈σ3

V 〉 = 2V T 2 λ3 ξ6 ;

κ4 = 〈σ4
V 〉c ≡ 〈σ4

V 〉 − 3〈σ2
V 〉2 = 6V T 3 [ 2(λ3ξ)

2 − λ4 ] ξ8 .

Tree graphs. Each propagator gives ξ2.

+

Scaling requires “running”: λ3 = λ̃3T (Tξ)−3/2 and λ4 = λ̃4(Tξ)−1, i.e.,

κ3 = 〈σ3
V 〉 = 2V T 3/2 λ̃3 ξ4.5 ; κ4 = 6V T 2 [ 2(λ̃3)

2 − λ̃4 ] ξ7 .
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Moments ofobservables

Example: Fluctuation of multiplicity is the fluctuation of occup. numbers,

δN =
X

p

δnp .

Any moment of the multiplicity distribution is related to a correlator of δnp :

κ3π = 〈(δN)3〉 =
X

p1

X

p2

X

p3

〈δnp1
δnp2

δnp3
〉 , where

P

p
= V

R d3
p

(2π)3
.

np fluctuates around n̄p(m),
which also fluctuates: δm = gδσ, i.e.,

δnp = δn0
p +

∂n̄p

∂m
g δσ .

〈δnp1
δnp2

δnp3
〉σ =

2λ3

V 2T

„

g

m2
σ

«3 v2
p1

γp1

v2
p2

γp2

v2
p3

γp3

v2
p

= n̄p(1 ± n̄p), γp = (dEp/dm)−1

Similarly for 〈(δN)4〉c.

Since 〈(δN)3〉 scales as V 1 we suggest ω3(N) ≡ 〈(δN)3〉
N̄

which is V 0.
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Energy scan and fluctuation signatures: notes
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µB

T
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with max ξ

vs
√

s

freeze-out point

freeze-out points

critical point

Higher moments provide more sensitive signatures.

As usual, value comes at a price:
Harder to predict – more theoretical uncertainties.
Signal/noise is worse for higher moments.

But one can, e.g., combine various higher moments to optimize or eliminate
uncertainties.
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Using ratios and mixed moments
Athanasiou, Rajagopal, MS (2010)

The dominant dependence on µB (i.e., on
√

s) is from
two sources ξ and np, e.g., κ3p ∼ λ̃3 g3

p ξ4.5n3
p.

ξ(µB) has a peak at µB = µcritical
B ;

nB ∼ eµcritical

B
/T determines the height of the peak;

other factors: g3
p and λ̃3 depend on µB weaker.

Leading dependence on µcritical
B can be cancelled in ratios. E.g.,

κ3p

Np

„

Nπ

Np

«2

∼ λ̃3 g3
p ξ4.5

Unknown/poorly known coupling parameters gp or gπ can be also cancelled
in ratios. E.g., no uncertainties in these ratios

κ4p

κ2
2p

κ2
2π

κ4π
, or

κ3
4p

κ4
3p

κ4
3π

κ3
4π

.

when critical fluctuations dominate. They are 1.

Mixed moments allow more possibilities. E.g.,

κ2
2p2π

κ4pκ4π
.

Mixed moments have no trivial Poisson contribution.
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Experimental data (pre-QM)
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(κσ2 = κ4/κ2 ≈ ω4 if κ2 ≈ N ).

No critical signatures seen at those values of µB .

Consistent with expectations that µcritical
B > 200 MeV.

What is happening at
√

s = 19.6 GeV? Low statistics.

Large positive contribution to Poisson is excluded, but large negative — is not.
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Negative kurtosis?
Could the critical contribution to kurtosis be negative? (MS, arxiv:1104.1627)

〈(δN)4〉c = 〈N〉 + 〈σ4
V 〉c

„

g

T

Z

p

v2
p

γp

«4

+ . . . ,

〈σ4
V 〉c = 6V T 2 [ 2λ̃2

3 − λ̃4 ] ξ7 .

On the crossover line λ̃3 = 0 by symmetry, while λ̃4 ≈ 4. > 0.

P (σV ): →
Thus 〈σ4

V 〉c < 0 and ω4(N) < 1 on the crossover line. And around it.

Universal Ising eq. of state: M = Rβθ, t = R(1 − θ2), H = Rβδh(θ)

here κ4 is κ4(M) ≡ 〈M4〉c
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Implications for the energy scan
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Implications for the energy scan
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19

On the crossover side, for
√

s = 19 GeV: ω4p − 1 ≈ −O(1) at ξ ≈ 1.5 fm.
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Implications for the energy scan
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If the kurtosis stays significantly below Poisson value in 19 GeV data, the
logical place to take a closer look is between 19 and 11 GeV.

QCD critical point and fluctuations – p. 13/15



Implications for the energy scan
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If the kurtosis stays significantly below Poisson value in 19 GeV data, the
logical place to take a closer look is between 19 and 11 GeV.
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Experimental data at QM

Potential sources of baseline shift (from Poisson) at high baryon density:
Fermi statistics: ω4 ≈ 1 − 7〈np〉p (small effect, but grows with µB).
O(4) critical line (Friman-Karsch-Redlich-Skokov).
Baryon number conservation?
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Concluding remarks

Critical point is a special singular point on the phase diagram, with unique
signatures. This makes its experimental discovery possible.

Locating the point is still a challenge for theory.

The search for the critical point is on. New RHIC results for 2 points with
µB > 200 MeV (

√
s = 11 and 7.7 GeV) were presented at QM.

If kurtosis stays significantly below Poisson value at
√

s = 19 GeV, then the
critical point could be close, to the right, on the phase diagram.

Then:
√

s = 15 GeV?
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