

Search for New Physics Involving Top Quarks at ATLAS

Tobias Golling (Yale University) on behalf of the ATLAS Collaboration

DPF Brown University, August 2011

Tobias Golling, Yale

The Top Quark

- Completes the quark sector (?)
- Properties well defined by SM

- The heaviest fundamental particle with unique properties
 - Large coupling to Higgs boson (~1)
 - Important role in electroweak symmetry breaking?
 - Short lifetime: decays before fragmenting $\tau\approx 5\cdot 10^{-25}\,s<<\Lambda^{-1}{}_{QCD}$

The most probable place for new physics to show up?

Top Physics at ATLAS

EW single top quark production

Need the Whole ATLAS Detector for these Measurements

- Jets (p_T > 20 GeV, lηl < 2.5)
- B-tagging
- Electrons (p_T > 20 GeV, $|\eta| < 2.5$, isolated)
- Muons (p_T > 20 GeV, $|\eta|$ < 2.5, isolated)
- Missing E_T

Search for New Physics in ttbar Events With Large Missing Transverse Momentum

ATLAS-CONF-2011-036

ttbar+E_T^{miss} – Generic Signature

- Stop quark pair production in supersymmetry (assuming the stop squark decays to a top quark and a neutralino: $\tilde{t} \rightarrow t \tilde{\chi}_1^0$)
- Little Higgs models with T-parity conservation
- Models with third generation scalar leptoquarks
- Models with universal extra dimensions with Kaluza-Klein-parity
- Models in which baryon and lepton number conservation arises from gauge symmetries

Benchmark

- Pair-produced vector 'quark' T decaying to a top and a scalar neutral A₀
 - A₀ is a dark matter candidate
 - Cross section higher than stop due to spin states

- First limits from CDF this past winter:
 - Excluded: m(T) = 360 GeV for $m(A_0) < 100 \text{ GeV}$ (using ~5/fb)

Analysis Strategy

- Event selection to extract signal while minimizing backgrounds
 - Using lepton+jets channel
- Strategy
 - Evidence for signal based on excess of events w.r.t. known backgrounds
 - Understanding of backgrounds is key
 - Use data driven approach wherever possible

Using 2010 data set: $L_{int} = 35 \text{ pb}^{-1}$

Event Selection

- Two channels: e+jets, μ+jets
- Standard ttbar selection
 - Single lepton triggers
 - ≥4 jets with p_T>20 GeV and lηl<2.5
 - One isolated lepton
 - Electron p_T >20 GeV, $l\eta l$ <2.5
 - Muon p_T>20 GeV, lηl<2.5
 - Large E_T^{miss}
- Additional selection
 - E_T^{miss}>80 GeV
 - W boson transverse mass $m_T > 120 \text{ GeV}$
 - Tight second lepton veto

 E_{T}^{miss} well described in 2-jet control region

ttbar Dilepton Background

- Dominant background is ttbar dilepton in which one of the leptons is
 - not reconstructed
 - outside the detector acceptance
 - a τ lepton
- ttbar dileptons include two high- p_T neutrinos, resulting in large E_T^{miss} and m_T tails.
- Second lepton veto removes ~50% of this background, rejecting events with
 - second lepton candidate satisfying looser selection criteria or
 - isolated track with $p_T > 12 \text{ GeV}$
- Second lepton efficiency validated in data in signal-depleted control regions

 m_{T} well described in 3-jet control region

Single Lepton Background

- ttbar I+jets and W+jets
 - Extract this background from data
- Normalize MC prediction in W
 transverse mass peak (60-90 GeV)
- Extrapolate to signal region m_T>120 GeV
 - Validate m_T shape in data in events with ≤3 jets and reject events with btagged jets to reduce the ttbar dilepton background
 - Good agreement between data and MC

Other Backgrounds

 QCD multi-jet background estimated in data-driven way making use of the fact that lepton isolation efficiency is different in QCD multi-jet events

 Single top, diboson, Z+jets backgrounds are tiny and estimated from (N)NLO theory cross section

Summary of Yields

- No evidence of an excess over the SM prediction
- Errors include systematic uncertainties dominated by uncertainties on the datadriven techniques

Source	Yield	
Single-Lepton $t\overline{t}/W$	8.4 ± 1.6	
Dilepton $t\bar{t}$	7.6 ± 2.0	
Z+jets	0.4 ± 0.1	
Dibosons	$0.2\pm < 0.1$	
Single Top	0.4 ± 0.1	
QCD	0.2 ± 0.6	
Total Background	17.2 ± 2.6	
Data	17	

Results

Source	Relative Error	
Dilepton $t\bar{t}$, Single Top, Dibosons, Z+jets		
Cross Section	15%	
Dilepton Veto	15%	
Jet Energy Scale & Resolution	11%	
Luminosity	3.4%	
Lepton ID	3%	
Monte Carlo Statistics	1%	
Total	25% (2.1 events)	
Single Lepton Backgrounds		
Spread in $S(m_{\rm T})$	15%	
Normalization	10%	
b-Tag Veto	3%	
QCD Shape	1%	
Total	18% (1.6 events)	
QCD		
Normalization in Control Regions	100%	
Muon Statistics	0.6 events	
Total	0.6 events	

ATLAS Preliminary:

- At 95% confidence level:
 - M(T)=300 GeV excluded for M(A₀)< 10 GeV

Search for New Physics in ttbar Resonances

ATLAS-CONF-2011-087

ttbar Resonances

- Search for resonances decaying to ttbar pairs in single lepton channel:
 - Kaluza Klein gluon g_{KK} (coloured) in Randall Sundrum model (arXiv:0910.1350[hep-ph]) predicts wide ttbar resonance
 - leptophobic Z' (colourless) in Topcolor model (arXiv:hepph/9411426) predicts narrow ttbar resonance
- L_{int}=200 pb⁻¹
- Single lepton ttbar event selection including b-tagging
- Documented in ATLAS-CONF-2011-087

Data-Driven Background Estimates

Candidate Events

- QCD multi-jets
 - Use fake e/μ in multi-jet data sample to model QCD E_T^{miss} distribution (shape)
 - QCD normalization: Fit E_T^{miss} spectrum

- W+jets enriched data sample selected as:
 - $30 \text{ GeV} < E_{\text{T}}^{\text{miss}} < 80 \text{ GeV}$
 - 40 GeV<m_T<80 GeV</p>
 - Veto events with b-jets
- Fit jet multiplicity distribution and extract W+jets scale factors in each jet bin

Signal and Background Yields

 good agreement of data with SM expectation

	Electron channel	Muon channel
tī	724	988
Single top	36	50
W+jets	93	172
Z+jets	6	8
Diboson	2	2
Total MC Background	861	1220
QCD Background	35	105
Total Expected	896	1325
Data observed	935	1396
Z', m = 500 GeV	15	21
$g_{KK}, m = 700 \text{ GeV}$	68	93

Mass Reconstruction

- Mass reconstruction:
 - p_z of neutrino obtained from W mass constraint
 - Jets far from the rest of the activity of the event are discarded: ΔR_{min}>2.5-0.015×m_i (m_i=jet mass)
 - m_{ttbar} from E_T^{miss} , lepton and 4 leading jets (3 if only 3 remain)

Results

Summary and Outlook

- A variety of new physics searches are carried out in top quark final states at ATLAS
- Sensitive to many models beyond the Standard Model
- No significant excess has been observed yet

- The discovery potential will further improve
 - With increasing integrated luminosity
 - By using more sophisticated analysis techniques
 - By further reducing systematics