

What is GAMBIT?

Tomás Gonzalo

Karlsruhe Institut für Technologie

Kavli Institute for Cosmology, Cambridge, 10 July 2023

GAMBIT

GAMBIT: The Global And Modular BSM Inference Tool

gambit.hepforge.org

github.com/GambitBSM

EPJC 77 (2017) 784

arXiv:1705.07908

- Extensive model database, beyond SUSY
- · Fast definition of new datasets, theories
- Extensive observable/data libraries
- Plug&play scanning/physics/likelihood packages
- Various statistical options (frequentist /Bayesian)
- Fast LHC likelihood calculator
- Massively parallel
- Fully open-source

Members of: ATLAS, Belle-II, CLIC, CMS, CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHIP, XENON

Authors of: BubbleProfiler, Capt'n General, Contur, DarkAges, DarkSUSY, DDCalc, DirectDM, Diver, EasyScantEP, ExoCLASS, FlexibleSUSY, gamLike, GM2Calc, HEPLike, IsaTools, MARTY, nuLike, PhaseTracer, PolyChord, Rivet, SOFTSUSY, Superlso, SUSY-AI, xsec, Vevacious, WIMPSim

Recent collaborators: V Ananyev, P Athron, N Avis-Kozar, C Balázs, A Benvial, S Bloor, Lu Braseth, T Bringmann, A Buckley, J Butterworth, J-E Camargo-Molina, C Chang, M Chrzaszcz, J Conrad, J Cornell, M Danninger, J Edgijö, T Ernken, A Fowlie, T Gonzalo, W Handley, J Harz, S Hoof, F Kahlhoefer, A Kvellestad, M Lecroq, P Jackson, D Jacob, C Lin, FN Mahmoudi, G Martinez, H Pacey, MT Prim, T Procter, F Rajec, A Raklev, JJ Renk, R Ruiz, A Scaffidi, P Scott, N Serra, P Stöcker, W. Su, J Van den Abeele, A Vincent, C Veniger, A Woodcock, M White, Y Zhang ++

80+ participants in many experiments and numerous major theory codes

What is GAMBIT for?

Karlsruher Institut für Technologie

Beyond the SM

- $\bullet\,$ Standard Model and ACDM can explain most phenomena
- $\bullet\,$ Beyond SM and/or beyond ACDM required to fit many issues
- Landscape of BSM models is enormous
- Many new particles and many new parameters
- Constrained from multiple particle, astrophysical and cosmological sources
- Global studies only reliable way to explore BSM models

from Tim Tait

KICC, 10/7/23 4/32

Global fits

- Multitude of experimental observables for each model
- Theory predictions f(x)
- Experiments measure $\mathcal{L}(\theta)$
- One needs

$$\mathcal{P}(x;\theta) = \frac{\mathcal{L}(\theta;x)\pi(x)}{Z}$$

[Rept.Prog.Phys. 85 (2022) 5, 052201]

from A.Kvellestad

- Exclusion regions do not properly represent the model predictions
- Impossible to analyse signals
- Combine all constraints into a composite likelihood

 $\mathcal{L} = \mathcal{L}_{Collider} \mathcal{L}_{Higgs} \mathcal{L}_{DM} \mathcal{L}_{Flavour} \dots$

Global fits

- Many BSM models come with many parameters
- Hard to find interesting regions
- Random methods are inefficient
- Mostly sample the boundary
- Need smart sampling strategies (differential, nested, genetic,...)

from A.Kvellestad

Global fits

• Assessment of validity of models should be done with rigorous statistical interpretations

Frequentist

- How well does my model reproduce the data?
- Parameter estimation: profiling $\mathcal{L}/\mathcal{L}_{max}$ -32 \mathcal{L}_{max} -32 $\mathcal{L}_{$
- Goodness-of-fit: *p*-value
- Must include all tests, LEE

Bayesian

- How much I trust my model given the data?
- Parameter estimation: marginalising P/P_{max}

- Model comparison: Bayes factors
- Prior dependence
- All of this comes with serious computational challenges → GAMBIT
 T. Gonzalo (KIT)
 KICC, 10/7/23
 7/32

What is GAMBIT made of?

Modules (Bits)

- Physics Modules
 - \rightarrow ColliderBit: collider searches
 - \rightarrow **DarkBit**: relic density, dd,...
 - \rightarrow FlavBit: flavour observables
 - \rightarrow **SpecBit**: spectra, RGE running
 - $\rightarrow~{\bf DecayBit:}~{\rm decay}~{\rm widths}$
 - \rightarrow **PrecisionBit**: precision tests
 - \rightarrow NeutrinoBit: neutrino likelihoods
 - \rightarrow CosmoBit: cosmological constraints
- ScannerBit : stats and sampling
 - $\rightarrow\,$ Diver, GreAT, Multinest, Polychord, \ldots
- \bullet Models: hierarchical model database
- Core : dependency resolution
- Backends : External tools to calculate observables
- \bullet GUM: Autogeneration of code

T. Gonzalo (KIT)

[Eur.Phys.J. C77 (2017) no.11, 795]

- [Eur.Phys.J. C77 (2017) no.12, 831]
- [Eur.Phys.J. C77 (2017) no.11, 786]
 - [Eur.Phys.J. C78 (2018) no.1, 22]
 - [Eur.Phys.J. C78 (2018) no.1, 22]
 - [Eur.Phys.J. C78 (2018) no.1, 22]
- [Eur.Phys.J.C 80 (2020) no.6, 569]

[JCAP 02 (2021) 022]

[Eur.Phys.J. C77 (2017) no.11, 761]

[Eur.Phys.J. C78 (2018) no.2, 98]

[Eur.Phys.J. C81 (2021) no 12, 1103]

Models

• Extensive model database

- Parent-daughter hierarchy
- Module functions are activated for each model

Backends

CosmoBit	DarkBit	ColliderBit
Acropolis 1.2.1 AlterBBN 2.2 DarkAges 1.2.0 MontePythonLike 3.5.0 MultiModeCode 2.0.0 classy 3.1.0 plc 3.0	CaptnGeneral 2.1 DDCalc 2.3.0 DarkSUSY 6.4.0 DirectDM 2.2.0 MicrOmegas 3.6.9.2 gamLike 1.0.1 nulike 1.0.9 pbarlike 1.0	Contur 2.1.1 HiggsBounds 4.3.1 HiggsSignals 1.4 Pythia 8.212 Rivet 3.1.5 nulike 1.0.9 phy 0.7
PrecisionBit	SpecBit	FlavBit
SUSYHD 1.0.2 gm2calc 1.3.0	FlexibleSUSY 2.0.1 SPheno 4.0.3 Vevacious 1.0	HepLike 2.0 HepLikeData 1.4 SuperISO 3.6
		DecayBit

SUSY_HIT 1.5

GUM

- GUM interfaces LLT SARAH and FeynRules with GAMBIT
- Uses existing HEP toolchains

• Autogenerates GAMBIT code for selected model

- Want to know more about GAMBIT and how to use it?
 - $\rightarrow \ {\bf Tuesday} \ {\bf 9:30am} \rightsquigarrow {\bf GAMBIT} \ {\rm tutorial}$
 - \rightarrow Coding/breakout sessions all week
- Only care about specific working groups?
 - $\rightarrow \ \mathbf{Monday} \ \mathbf{2:00pm} \rightsquigarrow \mathsf{Flavour} \ \mathsf{WG}$
 - $\rightarrow~\mathbf{Tuesday}~\mathbf{11:30am} \rightsquigarrow \mathsf{Neutrino}~\mathsf{WG}$
 - $\rightarrow \ \mathbf{Wednesday} \ \mathbf{9:30am} \rightsquigarrow \mathsf{Scanner} \ \mathsf{WG}$
 - $\rightarrow \ \mathbf{Wednesday} \ \mathbf{2:00pm} \rightsquigarrow \mathsf{Core} \ \mathsf{WG}$
 - $\rightarrow \ \mathbf{Thursday} \ \mathbf{9:30am} \rightsquigarrow \mathsf{Collider} \ \mathsf{WG}$
 - ightarrow Thursday 2:00pm \leadsto Dark Matter / Cosmo WG
 - $\rightarrow \ \mathbf{Friday} \ \mathbf{9:30am} \rightsquigarrow \mathsf{Precision} \ \mathsf{WG}$

What has GAMBIT done?

GAMBIT results

- 8 code papers: GAMBIT, ColliderBit, DarkBit, FlavBit, SDPBit, ScannerBit, CosmoBit, GUM
- 18 physics papers

	\rightarrow 4 SUSY papers	[Eur.Phys.J.C 83 (2023) 6, 493, Eur. Phys. J. C 79 (2019) 395]
		[Eur. Phys. J. C 77 (2017) 879, Eur. Phys. J. C 77 (2017) 824]
	\rightarrow 9 DM papers	[arXiv:2303.07362, arXiv:2303.08351]
		[Eur.Phys.J.C 83 (2023) 3, 249, Eur.Phys.J.C 81 (2021) 11, 992]
	[HEP 05 (2021) 159, JHEP 03 (2019) 191, Eur. Phys. J. C 79 (2019) 38]
		[Eur. Phys. J. C 78 (2018) 830, Eur. Phys. J. C 77 (2017) 568]
	$\rightarrow 2$ Cosmo papers	[JCAP 12 (2022) 027, Phys.Rev.D 103 (2021) 12, 123508]
	\rightarrow 2 Flavour papers	[Eur. Phys. J. C 81 (2021)]
	$\rightarrow~1$ Right-handed n	Eur. Phys. J. C 80 (2020) 6, 569]
)	1 review	[Progress in Particle and Nuclear Physics, 113 (2020) 103769]
)	20 conference procee	lings [gambit-proceedings-20xx]
	https:	<pre>//gambitbsm.org/community/publications/</pre>

Examples

$\begin{bmatrix} JHEP 03 (2019) 191 \end{bmatrix}$

QCD axions

Flavour EFT

[Eur.Phys.J.C 81 (2021)12,1076]

KICC, 10/7/23

16/32

Decaying cosmological axion-like particles

[JCAP 12 (2022) 027]

Cosmo ALP

• Axion-like particles decaying between BBN and CMB

Cosmo ALP

- Frequentist results
- Independent pars $\{m_a, \tau_a, \xi\}$
- Small abundance $\xi \ll 1$
- Mass lower bound $m_a > 300 \text{ keV}$
- No effect from N_{eff} , η_b or R parameter
- Mostly flat $\Delta \mathcal{L}$
- Small excess at $m_a = 126.1 \text{ MeV}$ $\tau_a = 6.04 \times 10^9 \text{ s}$

$$\xi = 4.18 \times 10^{-5}$$

Cosmo ALP

 10^{-8} ρ_a/ρ_γ 10^{-10} 10^{-12} 10^{-14} [₂-01] H/Q 2.4 2.62.41.0 ³He/D 0.8 0.6 0.4108 $10^9 \ 10^{10} \ 10^{11} \ 10^{12}$ 10^{7} t [s]

 10^{-6}

- In ACDM there is a correlation between $\Omega_b h^2$ and D/H
- No correlation in ALP model because photodisintegration
- Improved fit to observations
- ACDM within 1σ of ALP model

Effective field theory of Dark Matter

[Eur.Phys.J.C 81 (2021) 11, 992]

DM EFT

$$\begin{split} \mathcal{Q}_{1}^{(5)} &= \frac{e}{8\pi^{2}}(\overline{\chi}\sigma_{\mu\nu}\chi)F^{\mu\nu} \,, \\ \mathcal{Q}_{2}^{(5)} &= \frac{e}{8\pi^{2}}(\overline{\chi}i\sigma_{\mu\nu}\gamma_{5}\chi)F^{\mu\nu} \\ \mathcal{Q}_{1,q}^{(6)} &= (\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}q) \,, \\ \mathcal{Q}_{2,q}^{(6)} &= (\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q) \,, \\ \mathcal{Q}_{3,q}^{(6)} &= (\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q) \,, \\ \mathcal{Q}_{4,q}^{(6)} &= (\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q) \,. \\ \mathcal{Q}_{1}^{(7)} &= \frac{\alpha_{s}}{12\pi}(\overline{\chi}\chi)G^{a\mu\nu}G^{a}_{\mu\nu} \,, \\ \mathcal{Q}_{2}^{(7)} &= \frac{\alpha_{s}}{12\pi}(\overline{\chi}i\gamma_{5}\chi)G^{a\mu\nu}G^{a}_{\mu\nu} \end{split}$$

$$\begin{split} \mathcal{Q}_{3}^{(7)} &= \frac{\alpha_s}{8\pi} (\overline{\chi}\chi) G^{a\mu\nu} \widetilde{G}^a_{\mu\nu} \,, \\ \mathcal{Q}_{4}^{(7)} &= \frac{\alpha_s}{8\pi} (\overline{\chi}i\gamma_5\chi) G^{a\mu\nu} \widetilde{G}^a_{\mu\nu} \,, \\ \mathcal{Q}_{5,q}^{(7)} &= m_q (\overline{\chi}\chi) (\overline{q}q) \,, \\ \mathcal{Q}_{6,q}^{(7)} &= m_q (\overline{\chi}i\gamma_5\chi) (\overline{q}q) \,, \\ \mathcal{Q}_{7,q}^{(7)} &= m_q (\overline{\chi}\chi) (\overline{q}i\gamma_5q) \,, \\ \mathcal{Q}_{8,q}^{(7)} &= m_q (\overline{\chi}i\gamma_5\chi) (\overline{q}i\gamma_5q) \,, \\ \mathcal{Q}_{9,q}^{(7)} &= m_q (\overline{\chi}\sigma^{\mu\nu}\chi) (\overline{q}\sigma_{\mu\nu}q) \,, \\ \mathcal{Q}_{10,q}^{(7)} &= m_q (\overline{\chi}i\sigma^{\mu\nu}\gamma_5\chi) (\overline{q}\sigma_{\mu\nu}q) \,. \end{split}$$

DM EFT

• Only 6-dim operators, $\Omega_{\rm DM} h^2$ upper limit, exclusion only LHC

- $\rightarrow\,$ Upper limit on $\Lambda \lesssim 400~{\rm TeV}$
- $\rightarrow f_{\rm DM} < 1$ for $m_{\chi} < 100$ GeV
- → Dirac DM saturates RD and couples to quarks, 100 GeV $< m_{\chi} < 200$ TeV
- $\rightarrow\,$ Monojet excess with full LHC

 m_{χ}/GeV

 10^{3}

100 200 300 400 500

V/GeV

EW MSSM with light gravitino

[Eur.Phys.J.C 83 (2023) 6, 493]

		[GAMBIT, arXiv:2303.15	527 [hep-ph]]	
Name	\mathbf{Spin}	Gauge ES	Mass ES	Param
Higgs bosons	0	$H_{u}^{0} H_{d}^{0} H_{u}^{+} H_{d}^{-}$	$h H A H^{\pm}$	-
squarks	0	$ ilde{u}_L \; ilde{u}_R \; ilde{d}_L \; ilde{d}_R$		-
		${ ilde t}_L { ilde t}_R { ilde b}_R { ilde b}_R$	$\tilde{t}_1 \ \tilde{t}_2 \ \tilde{b}_1 \ \tilde{b}_2$	
sleptons	0	$\tilde{e}_L \ \tilde{e}_R \ \tilde{\nu}_e$	-	-
		$ ilde{\mu}_L ilde{\mu}_R ilde{ u}_\mu$	-	-
		$\tilde{\tau}_L \ \tilde{\tau}_R \ \tilde{\nu}_{\tau}$	$\tilde{\tau}_1 \ \tilde{\tau}_2 \ \tilde{\nu}_{\tau}$	-
neutralino	1/2	$\tilde{B} \; \tilde{W}^3 \; \tilde{H}^0_u \; \tilde{H}^0_d$	$ ilde{\chi}^{0}_{1} \ ilde{\chi}^{0}_{2} \ ilde{\chi}^{0}_{3} \ ilde{\chi}^{0}_{4}$	$M_1, M_2, \mu, \tan \beta$
chargino	1/2	$\tilde{W}^{\pm} \tilde{H}^{+}_{u} \tilde{H}^{-}_{d}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\pm}$	$\mu, M_2, \tan \beta$
gluino	1/2	\tilde{g}	-	-
gravitino	3/2	\tilde{G}	-	$m_{\tilde{G}} = 1 \text{ eV}$

- Only 7 SUSY particles below 1 TeV, other decoupled
- 4D theory parameter space: $M_1, M_2, \mu, \tan \beta$
- Light gravitino for prompt decay of lightest neutralino/chargino

T. Gonzalo (KIT)

• Profile likelihoods for neutralinos and charginos

- \rightarrow Preferred scenario are Higgsino-like, i.e. $\mu < M_1, M_2$
- \rightarrow At 2σ , $\mu < 0$, $\tan \beta \sim 1$, \Rightarrow 140 GeV $< \tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_1^{\pm} < 500$ GeV
- \rightarrow Dominant channels are $\tilde{\chi}_1^0 \rightarrow h \tilde{G}, \, \tilde{\chi}_1^0 \rightarrow Z \tilde{G}$
- \rightarrow Fits excess is leptons + $E_{\rm T}^{\rm miss}$ and b-jets + $E_{\rm T}^{\rm miss}$ searches
- $\rightarrow\,$ Simultaneous fit to multi-lepton and multi-b signal regions

- $\rightarrow~{\rm Largest}$ suriving region Higgsino NSLP
- $\rightarrow~\gamma$ + MET searches exclude binos $<800~{\rm GeV}$
- $\rightarrow~l+$ MET excludes wino except at >600 GeV and ~450 GeV due to excesses
- $\rightarrow~{\rm SM}$ cross section measurements kill lowest masses

What will GAMBIT do next?

- Flavour WG:
 - $\rightarrow\,$ global studies of the THDM-I, THDM-II, THDM-III and IDM
 - $\rightsquigarrow\,$ flavour constraints from LHCb and Belle (II)
 - $\rightsquigarrow~$ collider searches for heavy H and SM measurements
- Cosmo / DM WG:
 - $\rightarrow~{\rm Sub-GeV}$ DM with a dark photon

Thursday 3:00pm

- $\rightsquigarrow~{\rm Cosmological}$ and astrophysical constraints
- $\rightsquigarrow\,$ Direct detection, collider and beam dump experiments
- $\rightarrow~{\rm Annual}~{\rm modulation}~{\rm of}~{\rm DM}$
 - $\rightsquigarrow\,$ disentangling the DAMA signal with ANAIS and COSINE
- Neutrino WG:
 - \rightarrow global fit of the oscillations of three neutrinos Tuesday 11:30am \rightarrow solar, atmospheric, reactor and accelerator experiments
- Collider WG:
 - $\rightarrow\,$ Collider Bit Solo: standalone tool for recasting of LHC searches

- Long author (full community) projects: Thursday 11:30am
 - $\rightarrow\,$ Flavour and collider study of light leptoquarks
 - \rightsquigarrow what models to focus on now that $R_{K^{(*)}}$ is gone?
 - $\rightsquigarrow\,$ recasting of collider searches for leptoquarks
 - $\rightarrow~{\rm Status}$ of SUSY after Run 2 of the LHC
 - \rightsquigarrow where do popular SUSY models (e.g. CMSSM) stand after Run 2? \rightsquigarrow recasting of SUSY searches
- Other WG or short papers
 - \rightarrow Cosmo / DM WG:
 - \rightsquigarrow Gravitational waves (Nanograv, etc)
 - $\rightarrow\,$ Precision WG:
 - $\leadsto~{\rm SMEFT}$ fit
 - $\rightsquigarrow~$ MW in the MSSM
 - $\rightarrow~{\rm Core}~{\rm WG}:$
 - \rightsquigarrow GAMBIT-light

Tuesday 2:00pm

Wednesday 4:00pm

Conclusions

Conclusions

- $\bullet\,$ BSM models with many parameters and constraints \leadsto global fits
 - $\rightarrow\,$ Likelihood combination, smart sampling, statisical interpretation
 - $\rightarrow~{\rm GAMBIT}$ is the most complete and flexible framework for global fits
- GAMBIT is made of modules for each physics sector
 - $\rightarrow\,$ ColliderBit, DarkBit, CosmoBit, etc
 - $\rightarrow\,$ Interfaced to state-of-the art external tools
 - $\rightarrow~{\rm Autogeneration}$ of GAMBIT code with GUM
- GAMBIT has done 18 studies of BSM models in SUSY, DM, Cosmo, flavour and neutrino physics
- Many interesting projects ongoing and more to come

Backup

Dark Matter

• Three ways to look for DM interactions in particle physics

- \rightarrow DM interacting with nuclei
- \rightarrow LZ, XENON1T, PandaX,...

Relic density!

T. Gonzalo (KIT)

- \rightarrow DM annihilates into SM particles
- $\rightarrow \gamma$ rays, ν s, \bar{p} , ...
- \rightarrow Fermi-LAT, IceCube, AMS02

- $\rightarrow \text{ LHC searches for} \\ \text{large } \not\!\!\!E_T$
- $\rightarrow\,$ H invisible width

Dark Matter

- Plenty of evidence for DM from astrophysics (e.g bullet cluster) and cosmology (e.g CMB)
- If DM is a particle and if interacts then we should be able to detect it
- Most popular DM models are WIMPs
 - $\rightarrow\,$ EW-scale mass, accesible at colliders
 - $\rightarrow~$ Just right RD through freeze-out
 - $\rightarrow\,$ Form part of complete models (e.g. MSSM)

- No evidence that DM interacts with SM
- Very strong contraints from experimental searches (e.g LZ)
- Survivability of DM models depends on a combination of many constraints
- DM models must be tuned to survive

Dark Matter

• Scalar DM (S)

[GAMBIT, Eur.Phys.J.C 77 (2017) 8, 568]

$$\mathcal{L}_{S} = \frac{1}{2}\mu_{S}^{2}S^{2} + \frac{1}{2}\frac{\lambda_{hS}S^{2}}{|H|^{2}} + \frac{1}{4}\frac{1}{\lambda_{S}S^{4}} + \frac{1}{2}\frac{\partial_{\mu}S\partial^{\mu}S}{\partial_{\mu}S},$$

$$m_{S}^{2} = \mu_{S}^{2} + \frac{1}{2}\lambda_{hS}v^{2}$$
(S.Balan et al, arXiv:2303.07362 [hep-ph]]

- Vector DM (V_{μ}) $\mathcal{L}_{V} = -\frac{1}{4}W_{\mu\nu}W^{\mu\nu} + \frac{1}{2}\mu_{V}^{2}V_{\mu}V^{\mu} - \frac{1}{4!}\lambda_{V}(V_{\mu}V^{\mu})^{2} + \frac{1}{2}\lambda_{hV}V_{\mu}V^{\mu}H^{\dagger}H$ $m_{V}^{2} = \mu_{V}^{2} + \frac{1}{2}\lambda_{hV}^{2}$
- Fermionic DM (Dirac, ψ) $\mathcal{L}_{\psi} = \bar{\psi}(i\partial \!\!/ - m_{\psi})\psi - \frac{\lambda_{h\psi}}{\Lambda_{\psi}}(\cos\xi\bar{\psi}\psi + \sin\xi\bar{\psi}i\gamma_5\psi)(vh + \frac{1}{2}h^2)$
- Fermionic DM (Majorana, χ) [GAMBIT. Eur.Phys.J.C 79 (2019) 1, 38] $\mathcal{L}_{\chi} = \frac{1}{2} \bar{\chi} (i \partial \!\!\!/ - m_{\chi}) \chi - \frac{1}{2} \frac{\lambda_{h\chi}}{\Lambda_{\chi}} (\cos \xi \bar{\chi} \chi + \sin \xi \bar{\chi} i \gamma_5 \chi) (vh + \frac{1}{2}h^2)$

T. Gonzalo (KIT)

KICC, 10/7/23 32/32

T. Gonzalo (KIT)

Higgs portal DM

- Direct Detection
 - \rightarrow XENON1T, LUX 2016, PandaX 2016, 17 & 4T, CDMSlite, CRESST-II, CRESST-III, PICO-60 2017 & 2019, DarkSide-50, LZ 2022
- Relic abundance
 - $\rightarrow\,$ Planck 2015: $\Omega_{\rm DM}h^2 \leq 0.1188 \pm 0.0010$
- Indirect detection with $\gamma\text{-rays}$
 - $\rightarrow~\mathsf{Pass-8}$ combined of 15 dSphs from $Fermi\text{-}\mathrm{LAT}$ data
- Indirect detection with neutrinos Capt'n General, nulike
 - $\rightarrow~79\text{-string}$ IceCube search
- Indirect detection with antiprotons
 - $\rightarrow~\mathbf{AMS-02}$ using the INJ.BRK+vA propagation model
- Higgs invisible width
 - $\rightarrow \text{ BR}_{\text{inv}}(h \rightarrow \bar{X}X) < 19\% \ (2\sigma) \ [< 14\% \ (95\% \ \text{CL})]$
- Theoretical constraints
 - $\rightarrow~{\rm Perturbative}$ unitarity and EFT validity

Karlsruher Institut für Technologie

DarkSUSY, plc

gamLike

DDCalc

pbarlike

• Scalar DM

- Disconnected regions: along resonance $m_s \sim m_h/2$ and high mass
- High mass almost completely excluded by DD, ID and RD
- Small excess in Higgs invisible decay $BR_{inv} = 0.06$

• Vector DM

- Resonance region and highest mass region survive
- Intermediate mass killed by unitarity bound
- Inclusion of recent DD constraints may kill high mass

KICC, 10/7/23

• Majorana fermion DM (\approx Dirac DM)

- Resonance and high mass regions connected
- Looser constraints from DD due to pseudoscalar interactions

• Additional parameter CP phase ξ

CAMBIT v1 21

 $\log_{10} (\lambda_{h_X}/\Lambda_X/GeV$

 $\begin{array}{c} & & \\$

- Preferred pseudoscalar interactions
- Pure scalar not allowed at high masses
- Due to suppression of DD signals, no significant change with LZ & PandaX 4T

32 / 32

DM EFT

- Direct Detection
 - \rightarrow XENON1T, LUX 2016, PandaX 2016-17, CDMSlite, CRESST-II, CRESST-III, PICO-60 2017-19, and DarkSide-50
- Relic abundance
 - \rightarrow Planck 2018: $\Omega_{\rm DM} h^2 \le 0.120 \pm 0.001$
- ID with γ -rays

 $\rightarrow~\mathsf{Pass-8}$ combined of 15 dSphs from $\mathit{Fermi-LAT}$ data

- ID with neutrinos DirectDM, Capt'n General, nulike
 - $\rightarrow~79\text{-string}$ IceCube search
- ID constraints from CMB CalcHEP, DarkSUSY, DarkAges
 - $\rightarrow~95\%$ CL limit on energy deposition efficiency $f_{\rm eff}$
- Collider constraints
 - \rightarrow ATLAS 139fb⁻¹ mono-jet
 - \rightarrow CMS 36fb⁻¹ mono-jet

CalcHEP, DarkSUSY, plc

CalcHEP, gamLike

 $MadGraph_aMC@NLO, Pythia$

[GAMBIT, Eur.Phys.J.C 81 (2021) 11, 992]

DirectDM, DDCalc

Simplifed models

- Singlet DM candidate plus mediator that couples to SM particles
- E.g vector mediator V_{μ} that couples only to quarks

$$\mathcal{L}_{\rm V} = -rac{1}{4}F'_{\mu
u}F'^{\mu
u} - rac{1}{2}m_{
m M}^{2}V_{\mu}V^{\mu} + g_{
m q}V_{\mu}ar{q}\gamma^{\mu}q$$

• DM can be a scalar (ϕ) , a vector (X_{μ}) or a fermion $(\psi \text{ or } \chi)$

$$\mathcal{L}_{\phi} = \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi - m_{\rm DM}^{2} \phi^{\dagger} \phi + i g_{\rm DM}^{\rm V} V_{\mu} \Big(\phi^{\dagger} (\partial^{\mu} \phi) - (\partial^{\mu} \phi^{\dagger}) \phi \Big) \,,$$

$$\begin{split} \mathcal{L}_{X} &= \frac{1}{2} X^{\dagger}_{\mu\nu} X^{\mu\nu} + m_{\text{DM}}^{2} X^{\dagger}_{\mu} X^{\mu} - ig_{\text{DM}} \Big(X^{\dagger}_{\nu} \partial_{\mu} X^{\nu} - (\partial_{\mu} X^{\dagger\nu}) X_{\nu} \Big) V^{\mu} \,, \\ \mathcal{L}_{\chi} &= i \bar{\chi} \gamma^{\mu} \partial_{\mu} \chi - m_{\text{DM}} \bar{\chi} \chi + V_{\mu} \bar{\chi} (g_{\text{DM}}^{\text{V}} + g_{\text{DM}}^{\text{A}} \gamma^{5}) \gamma^{\mu} \chi \,, \\ \mathcal{L}_{\psi} &= \frac{1}{2} i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} m_{\text{DM}} \bar{\psi} \psi + \frac{1}{2} g_{\text{DM}}^{\text{A}} V_{\mu} \bar{\psi} \gamma^{5} \gamma^{\mu} \psi \,, \end{split}$$

Simplified DM models

- Direct Detection
 - \rightarrow XENON1T, LUX 2016, PandaX 2016-17 & 4T, CDMSlite, CRESST-II, CRESST-III, PICO-60 2017-19, DarkSide-50 and LZ 2022
- Relic abundance
 - \rightarrow Planck 2018: $\Omega_{\rm DM} h^2 \le 0.120 \pm 0.001$
- ID with γ -rays
 - $\rightarrow~\mathsf{Pass-8}$ combined of 15 dSphs from Fermi-LAT data
- Collider constraints
 - \rightarrow ATLAS 139fb⁻¹ mono-jet search
 - \rightarrow CMS 137fb⁻¹ mono-jet search
 - $\rightarrow\,$ ATLAS & CMS dijet resonance searches
- Unitary violation $s \lesssim \frac{\sqrt{48\pi}m_{\rm DM}^2}{g_{\rm DM}}$
- Perturbativity of decay widths, $\Gamma(m_M) \leq m_M$, $\Gamma(\sqrt{s}) \leq \sqrt{s}$

CalcHEP, DarkSUSY, plc

MadGraph_aMC@NLO, Pythia

CalcHEP, gamLike

DirectDM, DDCalc

Simplified DM models

• Scalar DM

• Vector DM

Simplified DM models

• Dirac fermion DM

• Majorana fermion DM

DM EFT

- Running and mixing
 - $\rightarrow\,$ For direct detection WCs are needed at $\mu=2\,\,{\rm GeV}$
 - \rightarrow For $\Lambda > m_t(m_t)$:

$$\mathcal{C}_{1,2}^{(5)} = -4 \frac{m_t(m_t)^2}{\Lambda^2} \log \frac{\Lambda^2}{m_t(m_t)^2} \, \mathcal{C}_{9,10}^{(7)}$$

$$\Delta C_i^{(7)} = -C_{i+4,q}^{(7)} \quad (i = 1, 2)$$

$$\Delta C_i^{(7)} = C_{i+4,q}^{(7)} \quad (i = 3, 4)$$

- EFT validity
 - \rightarrow DD requires $\Lambda > 2$ GeV
 - \rightarrow Annihilation processes (ID/RD) require $\Lambda > 2m_{\chi}$
 - \rightarrow Collider searches $\Lambda > \not\!\!\! E_T$

Karlsruher Institut für Technologie

Likelihoods

• Direct Detection

$$\frac{\mathrm{d}R}{\mathrm{d}E_{\mathrm{R}}} = \frac{\rho}{m_T \, m_\chi} \int_{v_{\mathrm{min}}}^{\infty} v f(v) \frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mathrm{R}}} \mathrm{d}^3 v$$

$$v_{\rm min}(E_{\rm R}) = \sqrt{\frac{m_T E_{\rm R}}{2\,\mu^2}}$$

 \rightarrow Non-relativistic operators

$$\mathcal{L}_{\rm NR} = \sum_{i,N} c_i^N(q^2) \mathcal{O}_i^N \;,$$

$$\sigma_{\rm SI}^{V} = \frac{\mu_N \lambda_{hV}^2 f_N^2 M_N^2}{4\pi m_V^2 m_h^4}, \quad \frac{d\sigma_{\rm SI}^X}{dq^2} = \frac{1}{v^2} \left(\frac{\lambda_{hX}}{\Lambda_X}\right)^2 \frac{A^2 F^2(E) f_N^2 m_N^2}{4\pi m_h^4} \left(\cos^2 \xi + \frac{q^2}{4m_X^2} \sin^2 \xi\right)$$

• Relic abundance $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v_{\rm rel} \rangle \left(n_{\chi} n_{\bar{\chi}} - n_{\chi,\rm eq} n_{\bar{\chi},\rm eq} \right)$ $\rightarrow \text{ Planck 2018: } \Omega_{\rm DM} h^2 \leq 0.120 \pm 0.001$

Likelihoods

• Indirect detection with γ -rays $\rightarrow \gamma$ -rays from DM annihilation in dSphs

 $\ln \mathcal{L}_{dwarfs}^{prof.} = \ln \mathcal{L}_{ki} \left(\Phi_i \cdot J_k \right) + \ln \mathcal{L}_J$

- $\rightarrow~\mathsf{Pass-8}$ combined of 15 dSphs from $Fermi\text{-}\mathrm{LAT}$ data
- Indirect detection with νs
 - → Solar capture of DM leads to very high energy ν s > solar ν s
 - $\rightarrow~79\text{-string}$ IceCube search
- Indirect detection constraints from CMB
 - $\rightarrow\,$ Injected energy (γ,e^{\pm}) changes reion history and optical depth τ
 - $\rightarrow~{\rm CMB}$ is sensitive to energy deposition efficiency $f_{\rm eff}$ via combination

$$p_{\rm ann} = f_{\chi} f_{\rm eff} \frac{\langle \sigma v \rangle}{m_{\chi}}$$

KICC, 10/7/23 32/32

T. Gonzalo (KIT)

Likelihoods

- Collider constraints
 - $\rightarrow\,$ Many signatures for DM searches

$$pp \to \chi \chi j \to j + \not\!\!\!E_T$$

- $\rightarrow \mathsf{MadGraph}_{a}\mathsf{MC}@\mathsf{NLO} \rightsquigarrow \mathsf{Pythia}$
- $\rightarrow~$ Interpolated grids for σ and ϵA
- \rightarrow Events per $\not\!\!E_T$ bin (signal regions)

$$N = L \times \sigma \times (\epsilon A)$$

- $\rightarrow \text{ATLAS } 139 \text{fb}^{-1} \text{ mono-jet} \\ \sim \text{SR with best significance} \\ \sim \mathcal{L}_{\text{ATLAS}}(s_i) \equiv \mathcal{L}_{\text{ATLAS}}(s_i, \hat{\gamma}_i)$
- \rightarrow Capped likelihood

 $\mathcal{L}_{\mathrm{cap}}(\mathbf{s}) = \min[\mathcal{L}_{\mathrm{LHC}}(\mathbf{s}), \mathcal{L}_{\mathrm{LHC}}(\mathbf{s}=\mathbf{0})]$

 \rightarrow CMS 36fb⁻¹ mono-jet

 \rightsquigarrow Profile over systematics

 $\sim \mathcal{L}_{\text{CMS}}(\mathbf{s}) \equiv \mathcal{L}_{\text{CMS}}(\mathbf{s}, \hat{\hat{\gamma}})$

Scan framework

• Model parameters

DM mass	m_{χ}
New physics scale	Λ
Wilson coefficients	$\mathcal{C}_a^{(d)}$

• Nuisance parameters

Local DM density Most probable speed Galactic escape speed	$ ho_0 onumber v_{ m peak} onumber v_{ m esc}$
Running top mass ($\overline{\text{MS}}$ scheme)	$m_t(m_t)$
Pion-nucleon sigma term	$\sigma_{\pi N}$
s-quark contrib. to nucleon spin	Δs
s-quark nuclear tensor charge	g_T^s
s-quark charge radius of the proton	r_s^2

• Needs smart sampling to efficiently scan over all parameters and explore interference effects among WCs

Scan framework

Operators

	SI scattering	SD scattering	Annihilations
$\mathcal{Q}_{1,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}q)$	unsuppressed		s-wave
$\mathcal{Q}_{2,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)(\overline{q}\gamma^{\mu}q)$	suppressed	—	<i>p</i> -wave
$\mathcal{Q}_{3,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q)$	—	suppressed	s-wave
$\mathcal{Q}_{4,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q)$		unsuppressed	s-wave $\propto m_q^2/m_\chi^2$
$\mathcal{Q}_1^{(7)} = \frac{\alpha_s}{12\pi} (\overline{\chi}\chi) G^{a\mu\nu} G^a_{\mu\nu}$	unsuppressed	—	<i>p</i> -wave
$\mathcal{Q}_2^{(7)} = \frac{\alpha_s}{12\pi} (\overline{\chi} i \gamma_5 \chi) G^{a\mu\nu} G^a_{\mu\nu}$	suppressed	—	s-wave
$\mathcal{Q}_{3}^{(7)} = \frac{\alpha_{s}}{8\pi} (\overline{\chi}\chi) G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu}$	—	suppressed	<i>p</i> -wave
$\mathcal{Q}_4^{(7)} = \frac{\alpha_s}{8\pi} (\overline{\chi} i \gamma_5 \chi) G^{a\mu\nu} \widetilde{G}^a_{\mu\nu}$	_	suppressed	s-wave
$\mathcal{Q}_{5,q}^{(7)} = m_q(\overline{\chi}\chi)(\overline{q}q)$	unsuppressed	_	$p\text{-wave} \propto m_q^2/m_\chi^2$
$\mathcal{Q}_{6,q}^{(7)} = m_q(\overline{\chi}i\gamma_5\chi)(\overline{q}q)$	suppressed	_	s-wave $\propto m_q^2/m_\chi^2$
$\mathcal{Q}_{7,q}^{(7)} = m_q(\overline{\chi}\chi)(\overline{q}i\gamma_5 q)$	_	suppressed	$p\text{-wave} \propto m_q^2/m_\chi^2$
$\mathcal{Q}_{8,q}^{(7)} = m_q(\overline{\chi}i\gamma_5\chi)(\overline{q}i\gamma_5q)$	_	suppressed	s-wave $\propto m_q^2/m_\chi^2$
$\mathcal{Q}_{9,q}^{(7)} = m_q (\overline{\chi} \sigma^{\mu\nu} \chi) (\overline{q} \sigma_{\mu\nu} q)$	loop-induced	unsuppressed	s-wave $\propto m_q^2/m_\chi^2$
$\mathcal{Q}_{10,q}^{(7)} = m_q (\overline{\chi} i \sigma^{\mu\nu} \gamma_5 \chi) (\overline{q} \sigma_{\mu\nu} q)$	loop-induced	suppressed	s-wave $\propto m_q^2/m_\chi^2$
T. Gonzalo (KIT)			KICC, 10/7/23

32/32

Hadronic input parameters

Parameter	Value	Parameter	Value
$\sigma_{\pi N}$	50(15) MeV [1]	μ_p	2.793 -[2]
$Bc_5(m_d - m_u)$	-0.51(8) MeV [3]	μ_n	-1.913 [2]
g_A	1.2756(13) [2]	μ_s	-0.036(21) [4]
m_G	836(17) MeV [1]	g_T^u	0.784(30) [5]
σ_s	52.9(7.0) MeV [6]	g_T^d	-0.204(15) [5]
$\Delta u + \Delta d$	0.440(44) [7]	g_T^s	$-27(16)\cdot 10^{-3}$ [5]
Δs	-0.035(9) [7]	$B_{T,10}^{u/p}$	3.0(1.5) [8]
$B_0 m_u$	$0.0058(5)~{ m GeV}^2$ [9]	$B_{T,10}^{d/p}$	0.24(12) [8]
$B_0 m_d$	$0.0124(5) \ { m GeV}^2$ [9]	$B_{T,10}^{s/p}$	0.0(2) [8]
$B_0 m_s$	$0.249(9) \ { m GeV}^2$ [9]	r_s^2	$-0.115(35) \text{ GeV}^{-2}$ [4]
[1][F. Bishara et. a	al., JHEP 11 (2017) 059] [2	2][PDG 2020] [3]	[A. Crivellin et. al., Phys. Rev. D
89 (2014) 054021] [4	4][D. Djukanovic et. al., F	hys. Rev. Lett.	123 (2019) 212001, R. S. Sufian
et. al, Phys. Rev	. Lett. 118 (2017) 042001]	[5][R. Gupta,	et. al., Phys. Rev. D 98 (2018)
091501] [6][S. Aoki	et. al., Eur. Phys. J. C	2 80 (2020) 113]	[7][J. Liang et. al., Phys. Rev. D
98 (2018) 074505] [8][B. Pasquini et. al., Phy	rs. Rev. D72 (20	05) 094029] [9][F. Bishara et. al.,
arXiv:1708.02678.]			

T. Gonzalo (KIT)

Nuisance parameters

Nuisance parameter		Value $(\pm 3\sigma \operatorname{range})$
Local DM density	$ ho_0$	$0.2 - 0.8 \mathrm{GeV}\mathrm{cm}^{-3}$
Most probable speed	v_{peak}	$240(24){\rm km}~{\rm s}^{-1}$
Galactic escape speed	$v_{ m esc}$	$528(75){\rm km}~{\rm s}^{-1}$
Running top mass ($\overline{\text{MS}}$ scheme)	$m_t(m_t)$	$162.9(6.0){ m GeV}$
Pion-nucleon sigma term	$\sigma_{\pi N}$	$50(45) { m MeV}$
Strange quark contrib. to nucleon spin	Δs	-0.035(0.027)
Strange quark nuclear tensor charge	g_T^s	-0.027(0.048)
Strange quark charge radius of the proton	r_s^2	$-0.115(0.105) \text{ GeV}^{-2}$

DM EFT

- Include dim-7 operators, $\Omega_{\rm DM}h^2$ upper limit, LHC loglike *capped*
 - $\rightarrow~{\rm No}$ change on large Λ small m_{χ} region
 - \rightarrow Neither $\mathcal{Q}_{1-4}^{(7)}$ (LHC) nor $\mathcal{Q}_{5-10,q}^{(7)}$ (suppressed) contribute to ann xsec
 - $\rightarrow\,$ However, RD can be saturated for $m_\chi < 100$ GeV (and small $\Lambda)$
 - $\rightarrow \mathcal{Q}_3^{(7)}$ and $\mathcal{Q}_{7,q}^{(7)}$ give unconstrained signals in DD and ID
 - $\rightarrow\,$ Similar fits to LHC excesses, even when dim-6 ops are zero

• ATLAS, Poisson loglike marginalised over nuisance ξ = relative signal/bkg uncertainties

$$\begin{aligned} \mathcal{L}_{\mathrm{marg}}(n|p) &= \int_0^\infty \frac{[\xi p]^n \, e^{-\xi p}}{n!} \\ &\times \frac{1}{\sqrt{2\pi}\sigma_\xi} \frac{1}{\xi} \exp\left[-\frac{1}{2} \left(\frac{\ln\xi}{\sigma_\xi}\right)^2\right] \mathrm{d}\xi \,. \end{aligned}$$

• CMS, convolved Poisson-Gaussian, profiled over systematic uncertainties γ on expected background yields with covariance matrix Σ

$$\mathcal{L}(\mathbf{s},\gamma) = \prod_{i}^{N_{\text{bin}}} \left[\frac{(s_i + b_i + \gamma_i)^{n_i} e^{-(s_i + b_i + \gamma_i)}}{n_i!} \right] \\ \times \frac{1}{\sqrt{\det 2\pi\Sigma}} e^{-\frac{1}{2}\gamma^{\mathbf{T}} \Sigma^{-1} \gamma}.$$

DM EFT

• $\mathcal{C}_1^{(6)}$

- \rightarrow spin-independent scattering
- \rightarrow strongly constrained \rightsquigarrow very small

• $C_2^{(6)}$

- \rightarrow momentum-dependent scattering
- $\rightarrow~\Lambda < 250~{\rm GeV}$ DD constrained

 $\rightarrow \Lambda > 250 \text{ GeV LHC constrained}$ (6)

• $C_3^{(6)}$

- $\rightarrow~both~{\rm SD}$ and MD scattering
- $\rightarrow~\Lambda<250$ GeV weak DD constraints
- \rightarrow Main contribution to Fermi LAT
- $\rightarrow~\Lambda>250$ GeV LHC constrained
- $\mathcal{C}_4^{(6)}$
 - \rightarrow spin-dependent scattering
 - \rightarrow identical to $\mathcal{C}_2^{(6)}$

DMEFT

Scan framework

- GAMBIT modules used for the scan
 - ightarrow SpecBit \sim
 - ightarrow DecayBit ightarrow
 - \rightarrow ColliderBit \rightsquigarrow

- ightarrow ScannerBit \sim
- Parameter ranges

$M_1(Q)$	[-1, 1] TeV	hybrid, flat
$M_2(Q)$	[0, 1] TeV	hybrid, flat
$\mu(Q)$	[-1, 1] TeV	hybrid, flat
$\tan\beta(m_Z)$	[1, 70]	log, flat
$m_{\tilde{G}}$	1 eV	fixed

one-loop spectrum with FlexibleSUSY $\tilde{\chi}^{0,\pm} \rightarrow \tilde{\chi}^{0,\pm}$ decays with SUSY-HIT $\chi^{0,\pm} \rightarrow \tilde{G}$ decays native MC event generation with Pythia 8 detector simulation with BuckFast LHC search emulation native SM measurements with Rivet and Contur sampling using diver

• Scan details

- $\rightarrow\,$ diver 1.0.4 self-adaptive rand/1/bin evolution
- $\rightarrow~16{\rm M}$ MC events for LHC searches
- $\rightarrow~100 {\rm k}~{\rm MC}$ events for measurements
- $\rightarrow 3.1 \times 10^5$ parameter samples

Supersymmetry

- Symmetry between fermions and bosons
- Predicts a whole new spectrum of supersymmetric partners

GOOD

- \rightarrow Solves hierarchy problem
- \rightarrow Provides DM candidate
- \rightarrow Stabilises vacuum

BAD

- \rightarrow Many new parameters $\mathcal{O}(100)$
- \rightarrow No evidence at LHC or precision measurements

Supersymmetry

Model	S	ignatur	e∫	£ dt [fb-	Mass limit	Reference
$\bar{\varphi}\bar{a},\bar{q}{\rightarrow}\varphi\bar{f}_{1}^{0}$	0 c. µ mono-jet	2-5 jets 1-3 jets	E_T^{min} E_T^{min}	139 139		2010.14293 2102.10874
$k3. k \rightarrow q\bar{q}\bar{t}_1^0$	0 e.µ	2-6 jets	E_T^{\min}	139	2 23 m(1)-4047 2 Forbidden 1.15-1.95 m(7)-100 GeV	2010.14293 2010.14293
$g_{\overline{d}}, g \rightarrow q \overline{q} W \overline{\pi}_{1}^{0}$	1.6.8	2-6 jets	-	139	ž 2.2 m(ř.) 600 GeV	2101.01629
22. 2-400(U)X''	ес, др. 0 с. ас	2 jets 7-11 jets	Enin	139	t 2.2 n(r)/2006/ t 1.97 n(r)/2006/	2204.19072 2008.06032
	88 <i>e</i> . µ	6 jata	÷	139	2 1.15 m()(m(*))-200 GeV	1909.08457
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{K}_{1}^{\prime\prime}$	0-1 к.р SS с.µ	3 <i>b</i> 6 jets	Ean	139 139	2.45 m(r)-500 GaV 1.25 m(r)-600 GaV	2211.08028 1909.08457
$\delta_1 \delta_1$	0 e. µ	2.6	L_T^{\min}	139	5. 1.255 mil/j.c400 GeV 5. 0.68 10 GeV camily, 2/, c20 GeV	2101.12527 2101.12527
$\tilde{\delta}_1 \tilde{\delta}_1, \tilde{\delta}_1 {\rightarrow} \delta \tilde{\ell}_2^0 {\rightarrow} \delta \delta \tilde{\ell}_1^0$	0 c, μ 2 τ	6 Å 2 Å	E_{Lim}^{min}	139 139	h Footister 0.23-1.35 MeG.ເປົ້າ-190Ger. ອ(ເປົ້າ-190Ger. h 0.13-0.85 MeG.ເປົ້າ-193Ger. ອ(ເປົ້າ-33Ger. ອ(ເປົ້າ-33Ger.	1908.03122 2103.08189
$\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow i \tilde{K}_1^0$	0-1 e.µ	≥ 1 jet	E_T^{min}	139	h 1.25 m(ℓ)+1 GaV	2004.14050, 2012.03799
$\tilde{I}_1 \tilde{I}_1, \tilde{I}_1 \rightarrow W \delta \tilde{K}_1^{\prime\prime}$	1.0 #	3 jets/1 0	Ento	139	T ₁ Forbidden 0.65 m(E)-500 GeV	2012.03799
$\tilde{h}\tilde{h}_{1}, \tilde{h} \rightarrow c\tilde{K}^{0}_{1}/\tilde{h}^{0}, \tilde{t} \rightarrow c\tilde{K}^{0}_{1}$	0 c. p	20	Enin	35.1	2 0.05 mil)-0.02	1005.01649
	0 e, µ	mono-jet	E _T	139	h 0.55 m(i,z) m(i))=5 GaV	2102.10874
$\tilde{r}_1 \tilde{r}_1, \tilde{r}_1 \rightarrow \tilde{w}_2, \tilde{x}_2 \rightarrow Z/\tilde{w}_1$ $\tilde{r}_2 \tilde{r}_2, \tilde{r}_2 \rightarrow \tilde{r}_1 + Z$	36.0	1.4.5	E_T^{min}	139	h (G) 500 GeV F ₂ Forbidden 0.86 m(G) -400 GeV, m(G) - 40 GeV	2006.05880 2006.05880
$\hat{x}_1^*\hat{x}_2^0$ via WZ	Multiple //jets ec.pp	s ≿ljet	Enin Elen	139 139	行派 0.96 m行小0, wino bino 行派 0.205 m行小の(合本) GeV wino bino	2106.01676, 2108.07586 1911.12808
$\hat{x}_1^* \hat{x}_1^*$ via WW	2 c. p		E_I^{mto}	139		1908.08215
$\hat{x}_{1}^{\pm}\hat{x}_{2}^{0}$ via Wb	Multiple (/jets	s	E_T^{min}	139	k_1^*/k_2^* Forbidden 1.05 m(\tilde{r}_1)=70 GeV, who bino	2004.10894, 2108.07586
$X_1^*X_1^*$ via t_L/r	2 c. µ		Eq.	139	A 10 m(J)=0.5(m(i))=m(i))	1908.08215
lulu. l + ll	2 4.10	0 jets	Ento	139	1 0.7 m(r)+0	1908.08215
00.0.10.00	ee, jija	5 1 164	Er	139	7 0.256 m(f) m(f) = 10 GeV	1911.12606
$HH, H \rightarrow MG/DG$	4 e. µ	0 jets	Elin	139	H 0.13-0.23 0.29-0.00 BP(z) - AG(-1 H 0.55 BP(z) - 20(-1	2103.11684
	0 c.µ =	2 large jet	5 Eren	139	H 0.45-0.93 89(1 - 20)-1	2108.07586
	21.0	21,00	L7-	139	W BH(T; 20)-BH(T; 10)-0.5	204.0072
Direct $\mathcal{X}_1^* \mathcal{X}_1^*$ prod., long-lived \mathcal{X}_1^*	Disapp. 1%	1 jet	Eans	139	λ ² δ ² δ ² 0.66 Pue Weo Pue Weo Pue Weo	2201.02472 2201.02472
Stable (R-hadron	pixel dE/dx		E_{T}^{mbo}	139	ž 2.05	2205.09013
Metastable g R-hadron, g→qqF1	picel dE/dx		E _T	139	2.2 m(f)=10 m/	2205.06013
rr, r→tu	product sub-		64	132	t 0.34 n() = 0.1m	2011.07812
	pixel dE/dx		E_T^{max}	139	P 0.36 s(7) = 10 ms	2205.06013
$\hat{\chi}_1^* \hat{\chi}_1^T / \hat{\chi}_1^0$, $\hat{\chi}_1^* \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e. µ		-	139	R [*] ₁ /R [*] ₁ [BR(Zy)=1; BR(Zy)=1] 0.625 1.05 Pure Wro	2011.10543
$\chi_1^*\chi_1^*/\chi_2^* \rightarrow WW/ZUUUvv$ z0 $z0$	46.8	U jets 6-6 Large iet	E180	139	λ ² ₁ /λ ² ₁ [A ₁₀ ± 0, A ₂₀ ± 0] 0.95 1.55 m(l ²)=200 GeV	2103.11684
$\overline{g}_{1}, \overline{g}_{2} \rightarrow q \overline{g} \overline{g}_{1}, \overline{g}_{1} \rightarrow q \overline{g} \overline{g}_{2}$ $\overline{g}_{1}, \overline{g}_{2} \rightarrow g \overline{g}_{1}, \overline{g}_{2} \rightarrow g \overline{g} \overline{g}_{2}$		Multiple		36.1	F (1, -20-4, 10-2) 0.55 1.05 million (1, -20) (av) involution	ATLAS-CONF-2018-003
$\vec{n}, \vec{i} \rightarrow b \vec{k}_1^A, \vec{k}_1^A \rightarrow b b x$		≥ 40		139	7 Forbiddan 0.95 milli)-600 Gav	2010.01015
$I_1I_1, I_1 \rightarrow bx$		2 jets + 2 8		36.7	i ₁ [gg, δy] 0.42 0.61	1710.07171
$t_1t_1, t_1 \rightarrow qt$	2 c.pr 1 µ	2.0 DV		35.1 135	1 [0-10x Zx1e8.3e-10x Zx2e9] 1.0 1.6 BR(i,-sg)=100%, cos(=1	1710.05544 2003.11956
10.00 ct - 10.00 ct	1.2				2 Decision	21/22 00/200
	$\label{eq:second} \begin{split} & Model & \\ & & Model & \\ & & & Model & \\ & & & & & Model & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & $	$ \begin{array}{c c c c c c c } \hline b (b + - \phi^2) & & & & & & & & & & & & & & & & & & &$	$\begin{tabular}{ c c c c } \hline below & Signature \\ \hline $0, t \rightarrow vit^{7}$ & $0, c_{0}$ & $2, 0$ and 0 & $0, c_{0}$ & $2, 0$ and 0 & $0, c_{0}$ & $2, 0$ and 0 & $0, c_{0}$ & $2, 0$ & $0, c_{0}$ & $1, 0$ & $0, c_{0}$ & $1, 0$	Ubdet Signature J 00	boot Bigrature Jianet and the second	Note Bajeward Bajeward <th< td=""></th<>

phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

KICC, 10/7/23 32/32

Supersymmetry

- Many of the limits are based on simplified models
 - \rightarrow Production of lightest states
 - $\rightarrow~$ Degenerate mass eigenstates
 - \rightarrow Fixed branching ratios

[ATLAS, Phys.Rev.D 98 (2018) 9, 092012]

[GAMBIT, Eur.Phys.J.C 79 (2019) 5, 395]

HEP Software Foundation

[Comput Softw Big Sci (2019) 3, 7]

Understanding the full implications of [experimental] searches requires the interpretation of the experimental results in the context of many more theoretical models than are currently explored at the time of publication.

T. Gonzalo (KIT)

- LHC SUSY searches
 - $\rightarrow~15$ ATLAS and 12 CMS Run 2
 - $\rightarrow \gamma + E_{\rm T}^{\rm miss}$
 - $\rightarrow 2/3/4$ leptons + $E_{\rm T}^{\rm miss}$
 - $\rightarrow 0/1/2 \text{ leptons} + \tilde{t} + E_{\mathrm{T}}^{\mathrm{miss}}$
 - $\rightarrow 2/3 b$ -jets + 0/1 lepton + $E_{\rm T}^{\rm miss}$
 - \rightarrow multiple jets + $E_{\rm T}^{\rm miss}$
- LHC "SM" xsec measurements
 - $\rightarrow~22$ pools with 45 ATLAS, CMS and LHCb measurements
 - $\rightarrow \ pp \rightarrow ZZ \rightarrow 4l$
 - $\rightarrow pp \rightarrow W^+W^- \rightarrow ll'(j) + E_{\rm T}^{\rm miss}$
 - $\rightarrow pp \rightarrow Z\gamma \rightarrow ll\gamma$
- LEP xsection constraints

- Three phenomenological scenarios
 - $\rightarrow \text{ Wino NLSP: } M_2 < M_1, \mu \quad \rightsquigarrow \quad \tilde{\chi}_1^0 \rightarrow \{Z, \gamma\} \tilde{G}, \\ \tilde{\chi}_1^{\pm} \rightarrow W^{\pm} \tilde{G}$
 - $\rightarrow \text{ Higgsino NLSP: } \mu < M_1, M_2 \quad \rightsquigarrow \begin{array}{c} \tilde{\chi}_1^0 \rightarrow \{Z, h\} \tilde{G}, \\ \tilde{\chi}_2^0, \tilde{\chi}_1^{\pm} \rightarrow f^{\pm} f^{\pm, 0} \tilde{\chi}_1^0 \end{array}$
 - \rightarrow Bino NLSP: $M_1 < M_2, \mu \quad \rightsquigarrow \quad \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$
- Heavier $\tilde{\chi}_i^0/\tilde{\chi}_i^{\pm}$ decay to NLSP with multiple $\{Z, W^{\pm}, h\}$

• Chargino NLSP extremely rare

- Impact of searches and measurements
- \rightarrow Photon searches exclude low mass binos
- \rightarrow Lepton searches exclude low mass winos
- \rightarrow Boosted boson searches exclude high mass winos
- $\begin{array}{l} \rightarrow \mbox{ Measurements} \\ \mbox{ exclude low mass} \\ \mbox{ Higgsino and winos} \end{array}$

- Module functions are the building blocks of GAMBIT
- Module functions provide a **capability**
- They have **dependencies** on other capabilities
- They have **backend** requirements
- Can be allowed for specific **models**
- Module functions are wrapped in functors
- GAMBIT resolves the dependent graph at runtime

Core

- Each module contains a collection of module functions
- Module functions provide a *capability*
- They have dependencies and backend requirements
- Allowed for specific models

// SM-like Higgs mass with theoretical uncertainties #define CAPABILITY prec_mh START_CAPABILITY

#define FUNCTION FH_HiggsMass
START_FUNCTION(trtpletdouble>)
DEPENDENCY(untproved_MSSM_spectrum, Spectrum)
DEPENDENCY(FH_HiggsMasses, Fh_HiggsMassObs)
ALLOW_MODELS(MSSMoSatQ, MSSMoSatMGUT)
#undef FUNCTION

#define FUNCTION SND HiggsHass STAF_FUNCTION(triplet-double>) DEPENDENT(Uninproved_HSSM_spectrum) BACKMD_REG(SUMPUMHIGS), (Meal, (const MList-MReal>&)) BACKMD_REG(SUMPUMHIGS), (const MList-MReal>&)) ALLOW_FUNCTION

#undef CAPABILITY

• At run time a dependency tree is generated and resolved

But...

How do I use GAMBIT with my favourite model? → Adding a model → Sorting out hierarchy → Making physics computations work with that model

How do I add a new physical observable or likelihood? ~> Create capabilities ~> Declare dependencies ~> and models ~> and backend requirements

 Write the function as a standard C++ function (one argument: the result)

32/32

KICC, 10/7/23

An example

• Majorana DM χ with scalar mediator Y

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2}\overline{\chi} \left(i\partial \!\!\!/ - m_\chi \right) \chi + \frac{1}{2} \partial_\mu Y \partial^\mu Y - \frac{1}{2} m_Y^2 Y^2 - \frac{g_\chi}{2} \overline{\chi} \chi Y - \frac{c_Y}{2} \sum_i y_f \overline{f} f Y \,.$$

math:

Choose FeynRules package: feynRules # Name of the model model: MDMSM # Model builds on the Standard Model FeynRules file base_model: SM # The Lagrangian is defined by the DM sector (LDM), # defined in MDMSM.fr, plus the SM Lagrangian (LSM) # imported from the 'base model', SM.fr Lagrangian: LDM + LSM # Make CKM matrix = identity to simplify output restriction: DiagonalCKM

PDG code of the annihilating DM candidate in $\hookrightarrow FeynRules$ file wimp_candidate: 52

- # Select outputs for DM physics.
- # Collider physics is not as important in this model. output:
 - pythia: false calchep: true micromegas: true

