
New School YAML Rules (& Observables)

The GAMBIT YAML Rules you’ve needed in a tube for years but didn’t know.

Pat Scott GAMBIT XV, KICC, Cambridge, July 12 2023

Q. What has 6 years of use shown is wrong with the current system?

1. You must write a separate ObsLikes entry for every module function that should be
targeted by a scan.

2. Ill-formed fields in Rules and ObsLikes are usually silently ignored.

3. Unused Rules are not reliably detected (some are, some aren’t).

4. The logic of what is meant by a Rule is a bit ad hoc, and open to misinterpretation:

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 2

Q. What has 6 years of use shown is wrong with the current system?

1. You must write a separate ObsLikes entry for every module function that should be
targeted by a scan.

2. Ill-formed fields in Rules and ObsLikes are usually silently ignored.

3. Unused Rules are not reliably detected (some are, some aren’t).

4. The logic of what is meant by a Rule is a bit ad hoc, and open to misinterpretation:

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 2

Q. What has 6 years of use shown is wrong with the current system?

1. You must write a separate ObsLikes entry for every module function that should be
targeted by a scan.

2. Ill-formed fields in Rules and ObsLikes are usually silently ignored.

3. Unused Rules are not reliably detected (some are, some aren’t).

4. The logic of what is meant by a Rule is a bit ad hoc, and open to misinterpretation:

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 2

Q. What has 6 years of use shown is wrong with the current system?

1. You must write a separate ObsLikes entry for every module function that should be
targeted by a scan.

2. Ill-formed fields in Rules and ObsLikes are usually silently ignored.

3. Unused Rules are not reliably detected (some are, some aren’t).

4. The logic of what is meant by a Rule is a bit ad hoc, and open to misinterpretation:

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 2

Q. What has 6 years of use shown is wrong with the current system?

1. You must write a separate ObsLikes entry for every module function that should be
targeted by a scan.

2. Ill-formed fields in Rules and ObsLikes are usually silently ignored.

3. Unused Rules are not reliably detected (some are, some aren’t).

4. The logic of what is meant by a Rule is a bit ad hoc, and open to misinterpretation:

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 2

Q. What has 6 years of use shown is wrong with the current system?

1. You must write a separate ObsLikes entry for every module function that should be
targeted by a scan.

2. Ill-formed fields in Rules and ObsLikes are usually silently ignored.

3. Unused Rules are not reliably detected (some are, some aren’t).

4. The logic of what is meant by a Rule is a bit ad hoc, and open to misinterpretation:

ObsLikes:

Quiz: does this tell the dep resolver to use ColliderBit::calc_HS_LHC_LogLike when

capability LHC_Higgs_LogLike is required, or does it just specify an option to pass

to ColliderBit::calc_HS_LHC_LogLike *if * it is used in a given scan?

- capability: LHC_Higgs_LogLike

module: ColliderBit

function: calc_HS_LHC_LogLike

options:

foo: "bar"

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 3

Q. What has 6 years of use shown is wrong with the current system?

5. They are not very flexible, so some things that you might expect to work just don’t:

ObsLikes:

Nope. Always need to specify "capability".

- function: calc_HS_LHC_LogLike

purpose: LogLike

Rules:

Nope. Need a "capability" for that "backends" entry too

- capability: my_capability

function: my_function

backends:

- {backend: my_backend, version: 0.0}

Nopity nope. Sorry, no way.

- backend: DDCalc

version: 2.3.0

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 4

Using !match all fixes issue 1

You can now select multiple module functions to include in a scan with one ObsLikes entry.

From yaml_files/QCDAxions.yaml:

ObsLikes:

- !match all

capability: lnL_CAST.*

purpose: LogLike

This matches both capability lnL_CAST2007 and capability lnL_CAST2017. One function
matches each capability, so two module functions get included in the likelihood function.

Note that regex is allowed in all ObsLikes and Rules now! It can help when using !match all,
but it isn’t required.

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 5

Explicit rules

New-style rules come with explicit if and then clauses:

Matches old-style rule’s behaviour.

- if:

capability: LHC_Higgs_LogLike

then:

module: ColliderBit

function: calc_HS_LHC_LogLike

options:

foo: "bar"

New behaviour not previously possible.

- if:

Look mum, no capability

module: ColliderBit

function: calc_HS_LHC_LogLike

then:

options:

foo: "bar"

Fixes 4: The logic of what is meant by a Rule is a bit ad hoc, and open to misinterpretation.
5: They are not very flexible, so some things that you might expect to work just don’t.

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 6

Explicit rules

New-style rules come with explicit if and then clauses:

Rules:

Oooh yeah.

- if:

backend: DDCalc

then:

version: 2.3.0

Fixes 5: They are not very flexible, so some things that you might expect to work just don’t.

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 7

Compilation of Rules and ObsLikes

GAMBIT Core now compiles all Rules and ObsLikes from YAML into instances of new C++
classes.

• Observable, ModuleRule or BackendRule.

• Checks every field of every entry in Obslikes and Rules section for validity.

• The dependencies field now contains nested ModuleRule instances.

• The backends field now contains nested BackendRule instances.

• Rules log which functions matched them at dep resolution time
→ foolproof checking that all Rules are used.

Fixes 2: Ill-formed fields in Rules and ObsLikes are usually silently ignored.
3: Unused Rules are not reliably detected (some are, some aren’t).

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 8

Compilation of ObsLikes

Table: Fields permitted in ObsLikes entries of a GAMBIT YAML file. All strings may contain regular
expressions (regex). From the GAMBIT 2 paper draft.

Matching field Value Type Required?

capability: string
At least one
of these is
required.

type: string

function: string

module: string

functionChain: [string,string,...] Optional
!match all N/A (Tag) Optional

Modifier field Value Type Required?

purpose: string Required
sub_capabilities: YAML Node Optional
printme: boolean Optional
dependencies: Module rule(s) Optional
backends: Backend rule(s) Optional

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 9

Backwards compatibility: implicit conversions to new Rules

All compiled rules now have if and then clauses.

But they will be implicitly constructed from old-style rules without if and then:

Rules:

- capability: A

type: B

function: Cfunc

module: ExampleBit

=

Rules:

- if:

capability: A

type: B

then:

function: Cfunc

module: ExampleBit

• Means most of your existing YAML files will work fine

• But that’s not an excuse to be lazy – write explicit rules in future, they’re much
clearer, safer and more powerful!

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 10

Compilation of Rules → ModuleRule

Table: Fields permitted in module rules built from Rules entries of a GAMBIT YAML file. All strings
may contain regular expressions (regex). All fields are optional, but at least one field is required in
each of the if and then blocks. From the GAMBIT 2 paper draft.

Matching Field Value Type OK in if block? OK in then block? Implicit conversion

capability: string Yes Yes if

type: string Yes Yes if

function: string Yes Yes then

module: string Yes Yes then

functionChain: [string,string,...] No Yes then

Modifier Field Value Type OK in if block? OK in then block? Implicit conversion

options: YAML Node No Yes then

dependencies: Module rule(s) No Yes then

backends: Backend rule(s) No Yes then

!weak N/A (Tag) No No N/A

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 11

Compilation of Rules → BackendRule

Table: Fields permitted in backend rules built from Rules entries of a GAMBIT YAML file. All
strings may contain regular expressions (regex). All fields are optional, but at least one field is
required in each of the if and then blocks. The implicit conversion of the capability field depends
on the presence of the group field: if the group field is present, capability is implicitly converted to
a member of the then block; if group is absent, capability is implicitly converted to a member of
the if block. From the GAMBIT 2 paper draft.

Matching Field Value Type OK in if block? OK in then block? Implicit conversion

capability: string Yes Yes depends on group

type: string Yes Yes if

function: string Yes Yes then

version: string Yes Yes then

backend: string Yes Yes then

group: string Yes No if

Modifier Field Value Type OK in if block? OK in then block? Implicit conversion

!weak N/A (Tag) No No N/A

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 12

So what doesn’t work any longer?

Rules:

- capability: A

function: B

backends:

{backend: C }

→

Rules:

- capability: A

function: B

backends:

{backend: C, group: D }

or

Rules:

- capability: A

function: B

backends:

- if:

group: D

then:

backend: C

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 13

So what doesn’t work any longer?

Rules:

- options:

option1: A

option2: B

→

Rules:

- if:

function: any

then:

options:

option1: A

option2: B

Rules:

- module: ExampleBit

options:

option1: A

option2: B

→

Rules:

- if:

module: ExampleBit

then:

options:

option1: A

option2: B

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 14

And what *bugs* did the new system find in existing YAML files?

CMSSM.yaml, FlavBit_CMSSM.yaml, MSSM7.yaml, MSSM9.yaml, NUHM1.yaml, NUHM2.yaml:

DarkBit_MSSM7.yaml:

DarkBit_ScalarSingletDM_Z2.yaml:

ScalarSingletDM_Z3.yaml:

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 15

Where to go for more info

• This is in the master as of Monday morning.

• It’s written up in full in the GAMBIT 2 paper draft at
gambit_community/Papers/R3/GAMBIT_2_0 if you want some reference material.

• Pull request #410 makes for fun reading if you really want gory details about why
each aspect of the new design is the way it is. Thanks Tomás!

• I am more than happy to answer any and all questions about it, and to help resolve
any issues transitioning to the new rules – whether during the meeting or after.

Pat Scott, GAMBIT XV New School YAML Rules (& Observables) 10–07–2023 16

https://github.com/GambitBSM/gambit/pull/410

