
GAMBIT-light

1. What is GAMBIT-light?

2. Why do we need it?

3. For users: how does it work?

4. For GAMBIT developers: how do we maintain it?

5. Future plans

1. What is GAMBIT-light?

● GAMBIT-light: GAMBIT without all the physics

● A lightweight yet powerful tool for statistical fits and optimisation tasks

● What GAMBIT-light is not: A full-blown tool for global fits in <your discipline>
— for that you’d want more of the full GAMBIT functionality

● Key design principles:

○ Users should never need to modify and rebuild any GAMBIT code

○ Minimise the extra maintenance work for GAMBIT developers

→

Maiken Pedersen
(UiO)

Marcin Krotkiewski
(UiO)

Brainstorming, early
code drafts, testing:

Janina Renk,
Fabio Zeiser,
Andreas Mjøs,
++

2. Why do we need it?

● Background:

○ We designed GAMBIT to be very general and physics-agnostic

○ We put a lot of effort into the main code framework
(Core, ScannerBit, Printers, CMake system, …)

○ → GAMBIT can be used for optimisation/fits outside particle/astro/cosmo

● Practical experience:

○ GAMBIT is a particle physics power tool → fairly heavyweight

○ Considerable threshold for non-experts to pick up and use/modify

○ In particular: frequent and slow recompilation kills the flow of the early
development/experimentation stage of projects

● External motivation for GAMBIT-light:

○ Help projects outside particle/astro/cosmo use GAMBIT

○ In particle/astro/cosmo:
suitable for quick experimentation, MSc projects, etc.

● Internal motivation for GAMBIT-light

○ Increase visibility and impact of Core & ScannerBit work

○ Increase visibility for Core & ScannerBit papers
(GAMBIT-light should not have a separate code paper – users should cite
the main GAMBIT & ScannerBit papers)

○ Sandbox for quick experimentation

3. For users: how does it work?

1. Build GAMBIT once

2. Develop your target/likelihood function code

2. Develop your target/likelihood function code
 (C++/C/Fortran: build as shared library)

3. Configure GAMBIT run with a YAML file

4. Run GAMBIT

5. Modify your own code, rerun GAMBIT, modify your own code, rerun GAMBIT, …

6. Analyse output samples (saved in HDF5 or ascii format)

Also: user-supplied prior transformation

Python

C++

Also: user-supplied prior transformation

4. For GAMBIT developers: how do we maintain it?

● Will describe the current setup – we can change this as needed

● github.com/GambitBSM/gambit_light is a fork from our main repo github.com/GambitBSM/gambit:

● Will describe the current setup – we can change this as needed

● github.com/GambitBSM/gambit_light is a fork from our main repo github.com/GambitBSM/gambit

● Only some updates on gambit are relevant for gambit_light (Core, ScannerBit, Printers, …)

● The branch gambit:gambit_light_sync contains

○ a list of the gambit files that should be identical on gambit_light

○ a GitHub Actions workflow that autogenerates pull requests on gambit_light whenever
some of these files are updated on gambit

● Workflow is currently set to sync gambit:gambit_light_sync → gambit_light:gambit_light_sync

● Example:

○ On gambit: a merge master → gambit_light_sync will generate a pull request on gambit_light
with relevant updates for gambit_light:gambit_light_sync

○ On gambit_light: when PR is checked and merged, we can merge gambit_light_sync → master

● Using the branches gambit_light_sync is just to make syncing a bit more manual for now
– in the future we can directly sync gambit:master → gambit_light:master

● All files are either fully synced or not synced at all – no partial syncing

● Most files on gambit don’t exist on gambit_light

● Many files on gambit_light (e.g. CMakeLists.txt) are completely detached from the
corresponding file on gambit

● All such non-synced gambit_light files can be modified directly on the gambit_light repo

● For synced files where we need small modifications between gambit and gambit_light,
we can implement the changes on gambit with

#ifdef GAMBIT_LIGHT
 …
#endif

● From the GitHub perspective, the file is fully synced between gambit and gambit_light.
(But it will generate different behaviour when compiled on gambit_light.)

● This is an experiment – we’ll have to tweak things to find the best system
for easy development + minimal duplicated maintenance

● Revisit and evaluate at the next face-to-face GAMBIT meetings

5. Future plans

● Code development

○ Keep testing the gambit → gambit_light syncing

■ First big test: the PR for Python scanners

○ Polish the gambit_light examples and documentation

○ PR for initial code updates on gambit

○ Document gambit_light in the “GAMBIT 2” paper

○ Make first public release

○ Next: absorb GAMBIT bugfixes and improvements as they arrive
(fast-slow, continual learning, …)

● Some ongoing projects that will use GAMBIT-light:

○ With the nuclear physics group in Oslo: unfolding of gamma spectra
(Andreas Mjøs, Erlend Lima, Lasse Braseth, Ann-Cecilie Larsen, Morten Hjorth-Jensen + me)

○ With the Norwegian Institute of Public Health: optimisation of Monte Carlo
simulations of disease spread
(Ida-Marie Johanson, Jørgen Midtbø, Francesco Di Ruscio, Yat Hin Chan, Birgitte Freiesleben de Blasio + Are and me)

