Introduction to Quantum Machine Learning

2nd COFI Advanced Instrumentation and Analysis Techniques School December 12, 2023

Outline

-
- ❖ Limitations of QML
	- -

3 Jack Y. Araz

Data Type

4 Jack Y. Araz

Data Type

Classical Correlation

Quantum I Entanglement

Quantum

Data Type

Classical Quantum

❖ Also Tensor Networks

CC CQ Quantum **QC QQ** Classical

Classical Quantum

Jack Y. Araz

8 Jack Y. Araz

Classical Quantum

Data Type

a^+ $\mid \downarrow \rangle$ = $\mid \uparrow \rangle$ *a* −| ⟩ ⁼ [|] ⟩

Recall Quantum Mechanics 101

$$
\begin{array}{ccc}\n\boxed{\downarrow} & \rightarrow & \boxed{0} \\
\boxed{\uparrow} & \rightarrow & \boxed{1} \\
2a^{\pm} = X \pm iY\n\end{array}
$$

SU(2) Generators {*X*, *Y*, *Z*, *I*}

How does the Quantum Computer work (theoretically).

Recall Quantum Mechanics 101

$$
\text{ (H)}: \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \to X = HZH \qquad \text{Jack Y. Araz}
$$

$$
\begin{aligned}\n\text{X} & \mathcal{L} \setminus \{0\} = |1\rangle, X|1\rangle = |0\rangle \\
\text{Y} & \mathcal{L} \setminus \{0\} = i|1\rangle, Y|1\rangle = -i|0\rangle \\
\text{Y} & \mathcal{L} \setminus \{0\} = |0\rangle, Z|1\rangle = -|1\rangle\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Y} & \mathcal{L} \setminus \{0\} = |+\rangle, H|1\rangle = |-\rangle \\
\text{Y} & \mathcal{L} \setminus \{0\} = |-\rangle, Y|-\rangle = i|+\rangle \\
\text{Y} & \mathcal{L} \setminus \{0\} = |-\rangle, Z|-\rangle = |+\rangle\n\end{aligned}
$$

Recall Quantum Mechanics 101

How does the Quantum Computer work (theoretically)?

$$
R_X(\theta) = e^{iX\theta/2} = \begin{pmatrix} \cos \theta/2 & -i \sin \theta/2 \\ i \sin \theta/2 & \cos \theta/2 \end{pmatrix}
$$

\n
$$
R_Y(\theta) = e^{iY\theta/2} = \begin{pmatrix} \cos \theta/2 & -\sin \theta/2 \\ \sin \theta/2 & \cos \theta/2 \end{pmatrix}
$$

\n
$$
R_Z(\theta) = e^{iZ\theta/2} = \begin{pmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{pmatrix}
$$

\n
$$
R_Y(\pi/2) |0\rangle = |-1\rangle
$$

How does the Quantum Computer work (theoretically).[?]

$$
|00\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} , |10\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} , |01\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} , |11\rangle =
$$

 CNOT gate:
$$
\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{\text{CNOT gate}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}
$$

12 Combining these Jack Y. Araz We can construct new operators by

$CNOT | xy⟩ = | x⟩ ∅ | x + y⟩$

 $CNOT|0y\rangle = 0$

[Du, Hsieh, Liu, Tao; Phys. Rev. `20](https://arxiv.org/abs/1810.11922)

How does the Quantum Computer work (theoretically).

But what does all this have to do with ML?

Jack Y. Araz

But what does all this have to do with ML?

The name of the game is "optimisation"

$$
f(\mathbf{x}; \theta)
$$
\n
$$
\sigma_i = \text{Actual}
$$
\n
$$
\sigma_i = \text{Actual}
$$
\n
$$
f_{\text{FC}}(\mathbf{x}; \theta) = \sigma_2 \left(\mathcal{W}_2 \cdot \sigma_1 \left(\mathcal{W}_1 \cdot \mathbf{x} + \mathcal{B}_1 \right) + \mathcal{B}_2 \right)
$$
\n
$$
\forall \theta \in \mathcal{W}_i \text{ or } \mathcal{B}_i
$$
\n
$$
\sigma_i = \text{Actual}
$$

σi := Activation Function

But what does all this have to do with ML?

But what does all this have to do with ML?

But what does all this have to do with ML?

What is the gradient of a quantum circuit?

Quantum computer can not compute gradients!

$$
+\pi/2)-f(\theta-\pi/2)
$$

How to find ground & thermal states with QML?

Jack Y. Araz

How can we find the ground state of a Hamiltonian?

Given a quantum many-body Hamiltonian, one can use the following methods to compute the ground state:

Tensor Networks (limited) entanglement structure)

✦ Exact diagonalisation (limited number of sites)

✦ Monte Carlo techniques (sign problem)

❖ Beyond classical vs quantum, this is important for ground state preparation, which is theoretically expensive.

Ex I: Variational Quantum Eigensolver

Ex II: Thermal state preparation

 $H = \sum J(X_iX_j + Y_iY_j + Z_iZ_j) + \sum (J_xX_i + J_zZ_i)$ $\langle i,j \rangle$ *i*

Quantum Computer is a pure state simulator

Ex II: Thermal state preparation

Jack Y. Araz

Data Encoding

 00000000000000000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 222222222222222 333333333333333 55555555555555 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 ת F 7 7 7 7 7 7 7777 77 8888 88 8° Y 8 8 **8** 8 8 9999999 999 9 9 9 9

$|x_i\rangle =$ $cos(x_i \pi/2)$ $\sin(x_i)$ *π*/2)]

Data Encoding

Quantum Machine Learning for Data Analysis

$(\theta) = |\langle 0 | \mathcal{P}^{\dagger}$ $(x_i$)*U*† (θ) Z $U(\theta)$ $\mathscr{P}(x_i)$ $|0\rangle$

$$
\arg\min_{\theta} \left(\mathcal{L}(\theta) = \frac{1}{N} \sum_{i}^{N} q^{\text{truth}} \log p_i(\theta) \right)
$$

 $\bullet\bullet\text{ Notice that there is no reason to just use }Z$ the operator here. ❖ There is no clear convention for choosing an operator for ML purposes. ❖ Why not multiple observations? See next section *Z*

Ex III: QML with MNIST Dataset

Jack Y. Araz

Sharp bits

Let's put everything together: Quantum-probabilistic Hamiltonian Learning for anomaly detection

Jack Y. Araz

[Quantu](https://arxiv.org/abs/2211.03803)m-probabilistic Hamiltonian Learning

[JYA, Spannowsky; arXiv: 2211.03803 ; PRA](https://arxiv.org/abs/2211.03803)

[What ha](https://arxiv.org/abs/2211.03803)s Hamiltonian to do with data?

[JYA, Spannowsky; arXiv: 2211.03803 ; PRA](https://arxiv.org/abs/2211.03803)

 $\sigma_D = \sum p_i |\psi_i\rangle$, $|\psi_i\rangle :=$ pure states *i*

A data point can be represented as a mixed state

$\mathscr{L}_{\theta,\phi}(\sigma_D) = \beta \langle K \rangle_{\theta,\phi} + k_\beta \ln Z_\theta \geq S(\sigma_D)$ ̂

 k_{β} := Boltzmann constant β := Inverse temperature

Quantum Circuit is a pure-state simulator!

See Gibbs-Delbrück-Moliére variational principle

 $F = E - TS = -k_{\beta}T \ln Z_{\theta}$

Hello world of HEP-ML: Top tagging

-
-

[What ha](https://arxiv.org/abs/2211.03803)s Hamiltonian to do with data?

[JYA, Spannowsky; arXiv: 2211.03803 ; PRA](https://arxiv.org/abs/2211.03803)

[Hamilto](https://arxiv.org/abs/2211.03803)nian as a discriminator!

[JYA, Spannowsky; arXiv: 2211.03803 ; PRA](https://arxiv.org/abs/2211.03803)

̂

[Hamilto](https://arxiv.org/abs/2211.03803)nian as a discriminator!

[JYA, Spannowsky; arXiv: 2211.03803 ; PRA](https://arxiv.org/abs/2211.03803)

 $e^{-iTK_{\theta}} =$ ̂ *N* Trotter-Suzuki approximation $e^{-iTK_{\theta}} = \prod e^{-i\Delta tK_{\theta}}$

̂

[What di](https://arxiv.org/abs/2211.03803)d the Hamiltonian learn?

[JYA, Spannowsky; arXiv: 2211.03803 ; PRA](https://arxiv.org/abs/2211.03803)

 $\mathcal{S}(\rho) = -\operatorname{Tr}[\rho \log \rho]$ Jefferson Lab

Conclusion

Jack Y. Araz

Conclusion

- ❖There is a wide range of applications for QML, from field theory to data analysis. VQC is significantly more capable compared to classical MC or TN methods.
-
- ❖ Quantum theory is extremely rich and worth exploring the applications designed for theory in data analysis.
-
- ❖There are significant limitations, i.e. barren plateaus.
- **❖ Quantum advantage in QML?????????**
	- ✦ One obvious advantage: Time evolution

