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❖ Introduction to Quantum Computing 

❖ Connection to Machine Learning 

❖ QML for field theories (code examples) 

❖ QML for data analysis (code example) 

❖ Limitations of QML 

❖ Using theory for data analysis with QML 

❖ Conclusion
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| i Matrix Product States

Tree Tensor Networks

Projected Entangled Pair States

Multi-Scale Entanglement

Renormalization Ansatz
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❖ Also Tensor Networks
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⋯
Recall Quantum Mechanics 101

a+| ⟩ = | ⟩

a−| ⟩ = | ⟩

| ↓ ⟩ → |0⟩

| ↑ ⟩ → |1⟩
2a± = X ± iY

 Generators SU(2)
{X, Y, Z, I}
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How does the Quantum Computer work (theoretically)?

x

y

|0i

|1i

X |0⟩

|0⟩

|0⟩ = (1
0)

|1⟩ = (0
1)

Recall Quantum Mechanics 101

❖  

❖  

❖

H |0⟩ = | + ⟩, H |1⟩ = | − ⟩

Y | + ⟩ = − i | − ⟩, Y | − ⟩ = i | + ⟩

Z | + ⟩ = | − ⟩, Z | − ⟩ = | + ⟩

| ± ⟩ =
1

2
( |0⟩ ± |1⟩)

❖  

❖  

❖

X |0⟩ = |1⟩, X |1⟩ = |0⟩

Y |0⟩ = i |1⟩, Y |1⟩ = − i |0⟩

Z |0⟩ = |0⟩, Z |1⟩ = − |1⟩

Hadamard gate (H) : 1

2 (1 1
1 −1) → X = HZH

H
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How does the Quantum Computer work (theoretically)?

x

y

|0i

|1i

|0⟩ = (1
0)

|1⟩ = (0
1)

Recall Quantum Mechanics 101

❖  

❖  

❖

RX(θ) = eiXθ/2 = ( cos θ/2 −i sin θ/2
i sin θ/2 cos θ/2 )

RY(θ) = eiYθ/2 = (cos θ/2 −sin θ/2
sin θ/2 cos θ/2 )

RZ(θ) = eiZθ/2 = (e−iθ/2 0
0 eiθ/2)
RY (π/2) |0⟩ = | − ⟩

11

RX(µ)
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|00⟩ =

1
0
0
0

, |10⟩ =

0
1
0
0

, |01⟩ =

0
0
1
0

, |11⟩ =

0
0
0
1

How does the Quantum Computer work (theoretically)?

CNOT gate:  

Controlled Z gate: 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

SWAP gate: 

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

CNOT |xy⟩ = |x⟩ ⊗ |x + y⟩

CNOT |0y⟩ = 0

We can construct 
new operators by 
combining these
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Du, Hsieh, Liu, Tao; Phys. Rev. `20

Unitary operators (all the 
single qubit operators we saw) Entanglers (CNOT gate) MeasurementInitial state

St
at

e 
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n:
 U

(θ
)|

0⋯
⟩

How does the Quantum Computer work (theoretically)?

⟨0 |U†(θ)𝒪U(θ) |0⟩

Make many 
measurements to 

construct the 
expectation value.

https://arxiv.org/abs/1810.11922
https://arxiv.org/abs/1810.11922
https://arxiv.org/abs/1810.11922
https://arxiv.org/abs/1810.11922
https://arxiv.org/abs/1810.11922
https://arxiv.org/abs/1810.11922


But what does all this have to 
do with ML?
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But what does all this have to do with ML?
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In
pu

t f(x; θ) ̂y

The name of the game is “optimisation”

→ ℒ( ̂y)

Update θ
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In
pu

t f(x; θ) ̂y

fFC(x; θ) = σ2 (𝒲2 ⋅ σ1 (𝒲1 ⋅ x + ℬ1) + ℬ2)
e.g. FC NN with 2 layers

∀θ ∈ 𝒲i or ℬi

:= Activation Functionσi

But what does all this have to do with ML?
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Unitary operators (all the 
single qubit operators we saw) Entanglers (CNOT gate) MeasurementInitial state

St
at

e 
pr

ep
ar
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io

n:
 U

(θ
)|

0⋯
⟩

But what does all this have to do with ML?

⟨0 |U†(θ)𝒪U(θ) |0⟩f(x; θ)
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̂y

Training

❖ Objective function: cross-entropy, mean 
squared error or a differential equation or 

variational problem

arg min
θ∈𝒲

ℒ( ⋅ , ⋅ )

JYA, Criado, Spannowsky; arXiv: 2103.14575

Elvet
F(x) = 0

Loss landscape  for 
stochastic gradient descent

In
pu

t f(x; θ)

But what does all this have to do with ML?

https://arxiv.org/abs/2103.14575
https://arxiv.org/abs/2103.14575
https://arxiv.org/abs/2103.14575
https://arxiv.org/abs/2103.14575
https://arxiv.org/abs/2103.14575
https://arxiv.org/abs/2103.14575
https://arxiv.org/abs/2103.14575
https://arxiv.org/abs/2103.14575


What is the gradient of a quantum circuit?
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∇θ f(θ) =
1
2 [f(θ + π/2) − f(θ − π/2)]

Quantum computer can not compute gradients!

RY

°
µ + º

2

¢
RY

°
µ ° º

2

¢∇θ f(θ) =
1
2 ( )

Parameter Shift



How to find ground & thermal 
states with QML?
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How can we find the ground state of a Hamiltonian?
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❖ Given a quantum many-body Hamiltonian, 
one can use the following methods to 
compute the ground state: 

✦ Exact diagonalisation (limited number 
of sites) 

✦ Monte Carlo techniques (sign problem) 

✦ Tensor Networks (limited 
entanglement structure) 

❖ Beyond classical vs quantum, this is 
important for ground state preparation, 
which is theoretically expensive.

E0 ≤
⟨Ψ |H |Ψ⟩

⟨Ψ |Ψ⟩

H = ∑
i

aiPi , EVQE = min
ϕ ∑

i

ai⟨0 |U†(ϕ)PiU(ϕ) |0⟩

EVQE = min
ϕ

⟨0 |U†(ϕ) H U(ϕ) |0⟩

Variational Quantum Circuit



Ex I: Variational Quantum Eigensolver
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H = ∑
i

(XiXi+1 + YiYi+1) + η∑
i

Zi

0

1

2

RY

RY

RY

RY

RY RY

RY

RY

RY RY

RY

RY

RY RY

RY

0 5 10 15
Epoch

°2

0

2

hH
i µ

Energy from exact diagonalisation:  
Reconstructed ground state energy: 

−3.328
−3.328

⟨H⟩θ = ⟨0 |U†(θ) H U(θ) |0⟩

VQC

→ X0 ⊗ X1 + Y0 ⊗ Y1 + X1 ⊗ X2 + Y1 ⊗ Y2 + η(Z0 + Z1 + Z2)

15 parameters 0 2 4 6

0

2

4

6

https://github.com/jackaraz/COFI-winter-school/blob/main/vqe_ising.ipynb
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Ex II: Thermal state preparation
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H = ∑
⟨i,j⟩

J(XiXj + YiYj + ZiZj) + ∑
i

(JxXi + JzZi)
ρth =

e−βH

Z
, Z = Tr [e−βH]

β = 1/T

Quantum Computer is a 
pure state simulator

F = E − TS

S = − Tr [ρth log ρth]

⟨H⟩θ

Free Energy

arXiv:2208.07621

F

U1(¡) U2(µ)

S
E

Optimiser

We don’t have 
access to ρth
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S = − ∑
i

pi log pi

Shannon Entropy

⟨H⟩θ = ∑
i

pi⟨ψi |U†
2 (θ) H U2(θ) |ψi⟩

ρth = ∑
i

pi |ψi⟩⟨ψi |
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Data Encoding
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|X⟩ = RY (Xπ/2) |0⟩

|xi⟩ = [cos(xiπ/2)
sin(xiπ/2)]



Data Encoding
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|X⟩ = ∑
i

RY (xiπ/2) |0i⟩

RY (x0º/2)

RY (x1º/2)

RY (x2º/2)

U(µ)

Data

|X⟩ =

x0
x1
x2
x3

Normalised vector

P
(|0

i!
|X

i)

U(µ)

Data

Angle Encoding Amplitude Encoding



Quantum Machine Learning for Data Analysis
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|0i

|0i

|0i

D
at

a
E

m
b
ed

d
in

g

U(µ)

pi(θ) = ⟨0 |𝒫†(xi)U†(θ) Z U(θ)𝒫(xi) |0⟩
2

arg min
θ (ℒ(θ) =

1
N

N

∑
i

qtruth log pi(θ))
Ex: Classification

❖ Notice that there is no reason to just use  the operator here. 
❖ There is no clear convention for choosing an operator for ML purposes. 
❖ Why not multiple observations? See next section

Z



Ex III: QML with MNIST Dataset
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We can not work with  pixels on 
a quantum circuit (try if you wish; it will 

burn your RAM) so we will use PCA
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arXiv:1804.00633
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⟨0 |U†(θ) Z0 U(θ) |0⟩ = yreco
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ADAM Optimiser

ℒ(θ) = max (1 − ytrueyreco, 0)
Hinge Loss

https://github.com/jackaraz/COFI-winter-school/blob/main/mnist.ipynb
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Sharp bits

❖ Which qubit to measure? 

❖ Barren plateaus! 

✦ Number of qubits 

✦ Number of layers 

❖ Which observables to use? 

❖ Which ansatz to use? 

❖ Real data is not “entangled”; it is “correlated”! 

❖ QC are very limited!

Jack Y. Araz31

Barren plateau, according to Dall-E

A short-term solution can 
be Tensor Networks!

Good read: arXiv 2309.09342 
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Types of Tensor Networks (some of them)
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S(ρ) ∼ log χ
Area lawS(ρ) ∼ I(s)χ

Volume law

S(ρ) = − Tr[ρ log ρ]

Briefly Tensor Networks
JYA, Spannowsky; JHEP ’21, arXiv: 2106.08334

JYA, Spannowsky; PRA ’22, arXiv: 2202.10471 

JYA, Schenk, Spannowsky; PRA ’23, 
arXiv: 2210.03679 
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ML:

field theory:
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Let’s put everything together: 
Quantum-probabilistic Hamiltonian 

Learning for anomaly detection
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Quantum-probabilistic Hamiltonian Learning
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A data point can be 
represented as a mixed state

σD = ∑
i

pi |ψi⟩ , |ψi⟩ := pure states

JYA, Spannowsky; arXiv: 2211.03803 ; PRA

Quantum Circuit is a pure-state simulator!
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Hamiltonian captures the 
entropic probability 

distribution of the mixed 
state.
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❖ Any field theory Hamiltonian, e.g. Ising model 
❖ A generic Hamiltonian, e.g. 

 

❖ But can these options capture the full 
complexity of the data? Can we get ambitious?

∑
⟨i,j⟩

(αi,jσ+
i σ−

j + h . c.)

What type of Hamiltonian can we choose?
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What has Hamiltonian to do with data?
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A data point can be 
represented as a mixed state

σD = ∑
i

pi |ψi⟩ , |ψi⟩ := pure states

Quantum Circuit is a pure-state simulator!

𝒦θ = ∑ Eθ(s) |s⟩⟨s |

ℒθ,ϕ(σD) = β⟨K̂⟩θ,ϕ + kβ ln Zθ ≥ S(σD)
kβ := Boltzmann constant

Inverse temperatureβ := ̂ρϕ → ̂ρθ,ϕ =
1
Zθ

e−βK̂θ

See Gibbs-Delbrück-Moliére 
variational principle 

F = E − TS = − kβT ln Zθ
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JYA, Spannowsky; arXiv: 2211.03803 ; PRA

Restricted 
Boltzmann 
Machine
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Hello world of HEP-ML: Top tagging
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❖ With the increased boost factor, jets (top decay products) are getting 
more collimated. 

❖ Hadronic top tagging tools: Mass grooming and filtering, Pruning, 
Trimming, Soft Drop Tagger, Mass Drop Tagger, HEPTopTagger, 
Machine Learning

Boost
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p W
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Top jet

R ≃
2mt

pT

JYA, Spannowsky; JHEP ’21
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What has Hamiltonian to do with data?
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Hamiltonian as a discriminator!
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Hamiltonian as a discriminator!
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What did the Hamiltonian learn?
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Conclusion

❖There is a wide range of applications for QML, 
from field theory to data analysis. VQC is 
significantly more capable compared to classical 
MC or TN methods. 

❖Quantum theory is extremely rich and worth 
exploring the applications designed for theory in 
data analysis. 

❖There are significant limitations, i.e. barren 
plateaus. 

❖Quantum advantage in QML???????? 

✦One obvious advantage: Time evolution

Jack Y. Araz42
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