

December 9-17, 2023

Principles (and future) of **Quantum Computing**

Jens Koch | Northwestern University

logistics

Ouantum Simulation for High-Energy Physics

Christian W. Bauer,^{1,*} Zohreh Davoudi[®],^{2,†} A. Baha Balantekin,³ Tanmoy Bhattacharya,⁴ Marcela Carena, 5,6,7,8 Wibe A. de Jong,¹ Patrick Draper,⁹ Aida El-Khadra,⁹ Nate Gemelke, ¹⁰
Masanori Hanada, ¹¹ Dmitri Kharzeev, ^{12,13} Henry Lamm,⁵ Ying-Ying Li, ^{14,15} Junyu Liu^o, ^{16,17} Mikhail Lukin,¹⁸ Yannick Meurice,¹⁹ Christopher Monroe,^{20,21,22,23} Benjamin Nachman,¹ Guido Pagano,²⁴ John Preskill,²⁵ Enrico Rinaldi,^{26,27,28} Alessandro Roggero,^{29,30} David I. Santiago,^{31,32} Martin J. Savage, 33 Irfan Siddiqi, 31,32,34 George Siopsis, 35 David Van Zanten, 5 Nathan Wiebe, 36,37 Yukari Yamauchi,² Kübra Yeter-Aydeniz,³⁸ and Silvia Zorzetti⁶ 1 Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ² Department of Physics, Maryland Center for Fundamental Physics, and the NSF Institute for Robust Quantum Simulation, University of Maryland, College Park, Maryland 20742, USA ³ Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA ⁴T-2, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ⁵ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA ⁶ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637, USA ⁸ Department of Physics, University of Chicago, Chicago, Illinois 60637, USA 9 Department of Physics and Illinois Center for the Advanced Study of the Universe and Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, USA ¹⁰ OuEra Computing Inc, Boston, Massachusetts 02135, USA ¹¹ Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom ¹² Center for Nuclear Theory, Department of Physics and Astronomy, Stony Brook University, New York 11794-3800, USA ¹³ Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA ¹⁴ Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China ¹⁵ Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China ¹⁶ Pritzker School of Molecular Engineering, Chicago Quantum Exchange, and Kadanoff Center for Theoretical Physics, University of Chicago, Illinois 60637, USA ¹⁷qBraid Co., Harper Court 5235, Chicago, Illinois 60615, USA ¹⁸ Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ¹⁹ Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA ⁰Duke Quantum Center, Duke University, Durham, North Carolina 27701, USA ²¹ Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA ²² Department of Physics, Duke University, Durham, North Carolina 27708 ²³ IonO, Inc., College Park, Maryland 20740, USA ²⁴ Physics and Astronomy Department, Rice University, Houston, Texas 77005, USA ²⁵ Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, **USA** ²⁶ Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA 27 Theoretical Quantum Physics Laboratory, Center for Pioneering Research, RIKEN, Wako, Saitama 351-0198, Japan ²⁸ Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Wako, Saitama 351-0198, Japan ²⁹ Dipartimento di Fisica, University of Trento, via Sommarive 14, Povo, Trento I-38123, Italy

HHL algorithm & ML relevance

Harrow, Hassadim & Lloyd 2008

$$
A\vec{x} = \vec{b}
$$

$$
\vec{x} = A^{-1}\vec{b}
$$

Use of HHL in training of deep neural networks offers exponential speedup over classical training

Notation

 $\mathbb{B} = \{0, 1\}, \quad n, m \in \mathbb{N}$

Notation

 $\mathbb{B} = \{0, 1\}, \quad n, m \in \mathbb{N}$

 $\mathbb{B} = \{0, 1\}, \quad n, m \in \mathbb{N}$

 Ω sample space for random variable(s)

a black box* implementing map *f*

Examples

$f: \mathbb{B}^n \times \Omega \to \mathbb{B}^m$

a black box* implementing map *f*

Examples

$f: \mathbb{B}^n \times \Omega \to \mathbb{B}^m$

a black box* implementing map *f*

$f: \mathbb{B}^n \times \Omega \to \mathbb{B}^m$

Vovt.

a black box* implementing map *f*

Examples

$f: \mathbb{B}^n \times \Omega \to \mathbb{B}^m$

programmable computer

a black box* that can implement**** any***** given *f*

classical vs. quantum computer

classical

"uses purely classical physics paradigms for computing"

quantum

"uses concepts specific to quantum physics"

Jozsa & Linden (2003)

For any quantum algorithm operating on pure states, we prove that the presence of **multi-partite entanglement**, with a number of parties that **increases unboundedly with input size**, is **necessary** if the quantum algorithm is to offer an **exponential speed-up over classical computation**.

entanglement

quantum computing hardware

Development Roadmap |

IBM Quantum

Quantum Computing Market Map

Non exhaustive and in no particular order. Excludes details on control systems, assembly languages, circuit design, etc.

¹ Software offerings can be further classified into SDKs, firmware / enablers, algorithms / applications, simulators etc. but many companies are offering a mixture across the stack ² Many QPU providers are offering full stack services (e.g. Pasgal acquired Qu&Co, Quantinuum was originally CQC prior to merger with HQS, etc.

Ohmic losses energy dissipation, $V = RI$

interaction with the environment

state dramatically reduces quantum effects

Building quantum bits from superconducting circuits

$$
=\hbar\omega\left(a^{\dagger}a+\frac{1}{2}\right)
$$

$$
[\Phi,Q]=i\hbar
$$

 L

Quantum LC oscillator as a qubit?

not a good qubit… need nonlinearity

l

From LC oscillator to transmon

Brian Josephson Nobel Prize 1973

Josephson effect

current-phase relation:

phase evolution equation:

$$
I = I_0 \sin \varphi
$$

$$
\frac{d\varphi}{dt} = V \cdot \frac{2\pi}{\Phi_0}
$$

Josephson junction

 $V1 = 141.4$ nm

Bottom SC electrode 1 (Al) i

> SC electrode 1 (Al) Top
SC electrode 1 (Al)

> > IBM Quantum

 $H 1 = 121.0 nm$

quantum computing:

use quantum parallelism and entanglement to beat classical computers

Shor's algorithm

 $N = p q$ (p,q prime) period-finding of modular functions

Grover's algorithm

database

search unsorted

Harrow-Hassidim-Lloyd (HHL) algorithm

matrix inversion* $\vec{x} = A^{-1}\vec{b}$

quantum adiabatic algorithm

optimization

digital quantum simulation $i\hbar \frac{d}{dt}|\Psi(t)\rangle = H|\Psi(t)\rangle$

quantumalgorithmzoo.org
quantum parallelism

quantum parallelism

What makes a quantum computer tick?

quantum parallelism

storing quantum states

$$
\textcircled{\scriptsize{\fbox{}}}\in
$$

$$
\cdots
$$

$$
\textcircled{\scriptsize{\fbox{1}}}\ \textcircled{\scriptsize{\fbox{2}}}
$$

$$
|\Psi\rangle = \alpha_0|00\cdots 000\rangle
$$

$$
+ \alpha_1|00\cdots001\rangle
$$

$$
+ \alpha_2|00\cdots 010\rangle
$$

$$
+ \; \alpha_3|00\cdots 011\rangle
$$

$$
+ \; \alpha_{2^N} \vert 1 \cdots 111 \rangle
$$

•
$$
2^N
$$
 complex amplitudes

• storage:
$$
2^N \times 128
$$
 bits

$$
N = 65 \text{ qubits} \qquad \qquad
$$

memory/disk space: \rightarrow 590 billion GB

• **but**: output only N classical bits

$$
\ket{\Psi} \text{---} \boxed{\swarrow \searrow} = \text{e.g., } 01 \cdots 101
$$

quantum parallelism

- can process all possible inputs at once
- **not sufficient** for quantum speedup
	- measurement only accesses one output state

Circuit elements

Building blocks for superconducting qubits

transmon qubit

Introduce nonlinearity:

replace inductor with Josephson junction

arbitrary single-qubit gates

$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$

1/f charge noise 1/f flux noise critical current noise dielectric loss photon shot noise Purcell decay nonequilibrium quasiparticles

…

DECOHERENCE / ERRORS

Your qubit ran into a problem that it couldn't handle, and now it needs to restart.

You can search for the error online: HBAR_DIED_A_HORRIBLE_DEATH

error mitigation strategies

(materials science, fabrication, microwave engineering, …)

intrinsic noise protection

(develop circuits that are insensitive to noise)

active quantum error correction (monitor for errors, apply correction steps when required in feedback loop)

charge noise Cooper pair box

flux noise rf SQUID qubit, 3-junction flux qubit

Cooper pair box

letters to nature

Coherent control of macroscopic quantum states in a single-Cooper-pair box

Y. Nakamura*, Yu. A. Pashkin† & J. S. Tsai*

* NEC Fundamental Research Laboratories, Tsukuba, Ibaraki 305-8051, Japan † CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012, Japan

NATURE | VOL 398 | 29 APRIL 1999 | www.nature.com

Physica Scripta. Vol. T76, 165-170, 1998

Quantum Coherence with a Single Cooper Pair

V. Bouchiat,* D. Vion, P. Joyez, D. Esteve and M. H. Devoret

Quantronics group, Service de Physique de l'Etat Condensé CEA-Saclay, F-91191 Gif-sur-Yvette, France

Received October 27, 1997; revised version received January 15, 1998; accepted January 23, 1998

Cooper pair box

Fig. 1. Schematics of the single Cooper box: a superconducting electrode (island) is in contact with a superconducting reservoir though a tunnel junction (grey zone) with capacitance C_i . Excess Cooper pairs tunnel onto the island in response to an electric field applied by means of the gate capacitance $C_{\rm g}$ and voltage U.

$T_{\varphi} \approx 1$ ns

V Bouchiat et al., Phys. Scr. **1998,** 165 (1998)

charge noise dephasing

 \blacktriangleright dephasing $1/T_{\varphi} \sim \left(\frac{\partial \omega_q}{\partial \lambda}\right)^2 S(0)$

Flattening the spectrum

for charge noise protection

increase E_J / E_C

basics of qubit control & readout

Qubit operations and readout

$$
\hat{H}_{\rm JC} = \frac{1}{2} \hbar \omega_q \hat{\sigma}_z + \hbar \omega_r \hat{a}^\dagger \hat{a} + \hbar g (\hat{a} \hat{\sigma}_+ + \hat{a}^\dagger \hat{\sigma}_-) \hat{a}
$$

Perturbation theory in $g/\Delta \ll 1$

(Schrieffer-Wolff transf. / adiabatic elimination)

$$
\hat{H}_{\rm JC}^{\rm eff} = \hbar \omega_r \hat{a}^\dagger \hat{a} + \frac{\hbar \omega_q'}{2} \hat{\sigma}_z + \frac{\hbar \chi \hat{a}^\dagger \hat{a} \hat{\sigma}_z}{2} \nonumber \\ \hspace{2.5cm} \underbrace{\hat{H}_{\rm JC}^{\rm eff}}_{\rm ac\, Stark\,shift:} \; \chi = \frac{g^2}{\Delta} \nonumber
$$

dispersive regime

$$
\hat{H}_{\rm JC}^{\rm eff}=\hbar\omega_r\hat{a}^\dagger\hat{a}+\frac{\hbar\omega_q'}{2}\hat{\sigma}_z+\hbar\chi\hat{a}^\dagger\hat{a}\hat{\sigma}_z
$$

$$
=\hbar(\omega_r+\chi\hat{\sigma}_z)\hat{a}^\dagger\hat{a}+\frac{\hbar\omega_q'}{2}\hat{\sigma}_z
$$

Resonator frequency depends on qubit state!

dispersive readout

$$
\hat{H} = \hbar \omega_r \hat{a}^\dagger \hat{a} + \hat{H}_{\text{drive}}
$$

dispersive readout

$$
\hat{H}_{\rm JC}^{\rm eff}=\hbar(\omega_r+\chi\hat{\sigma}_z)\hat{a}^\dagger\hat{a}+\frac{h\omega_q'}{2}\hat{\sigma}_z
$$

 \mathbf{r}

ᆂ

two -qubit gate (example)

time (flux biasing)

two -qubit gate (example)

time (flux biasing)

two -qubit gate (example) ω_{q1} - ω_{q2} ω_{q2} ω_{q1} flux bias ω_r

 ω_r

time (flux biasing)

After quarter period: $\sqrt{S}WAP$ gate

$\sqrt{\text{iSWAP}}|01\rangle =$

$$
\sqrt{\text{iSWAP}} = \sqrt{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0 \\ 0 & \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
$$

$$
|0\rangle \mapsto \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle \mapsto \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

$$
\sqrt{\text{iSWAP}} = \sqrt{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0 \\ 0 & \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
$$

$$
|01\rangle = |0\rangle \otimes |1\rangle \quad \mapsto \quad \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}
$$
$$
\sqrt{\text{iSWAP}} = \sqrt{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0 \\ 0 & \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
$$

$$
\sqrt{\text{iSWAP}}|01\rangle =
$$
\n
$$
|0\rangle \mapsto \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle \mapsto \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

$$
\sqrt{\text{iSWAP}} = \sqrt{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0 \\ 0 & \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
$$

$$
\sqrt{\text{iSWAP}}|01\rangle =
$$
\n
$$
|0\rangle \mapsto \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle \mapsto \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

universal control

For gate based quantum computing: what is a

minimal set of elementary qubit operations

sufficient to carry out an **arbitrary algorithm**?

universal control

- 1. arbitrary single-qubit gates (can approximate and decompose into sequence of H, T)
- 2. one 2-qubit entangling gate (like CNOT or \sqrt{SWAP})

universal control

2ⁿ×2ⁿ unitary

Summary of decomposition chain:

- 1 Iterative reduction of general n-qubit unitary into n-qubit level-2 unitaries
- 2 Conversion of n-qubit level-2 unitaries into $C^{k}(U^{(1)})$ gates $(k=n-1)$, if necessary with the help of Gray codes
- 3 Decompose Ck(U¹¹³) gale into cascade of TOFFOLIs and one C'(U(1) gate, using n-1 auxiliary qubits
- 4 Express ToFFOLI in terms of CA gates where A²-X. Then, use AXBXC decomposition on CA and C'(U⁽¹⁾) to reduce to CNOTs and I-qubit gates.
- $\mathbb G$ Approximate l-qubit gates by sequences of H and T gates, using irrational angle decomposition.

TOFFOLI gate decomposition

who's the qubit? bosonic-qubit architectures

who's the qubit?

SCHEME 1: The qubit is the qubit (duh!)(Google, IBM, Rigetti etc.)

SCHEME 2: The qubit is a linear cavity mode Yale, FNAL-SQMS, Schuster

- Fock state encoding - bosonic codes
- cat states
- GKP states

$$
\hat{H} = \sum_{j} \omega_j \hat{a}_j^{\dagger} \hat{a}_j + \sum_{j} \chi_j \hat{a}_j^{\dagger} \hat{a}_j \hat{\sigma}_z + \frac{\omega'_q}{2} \hat{\sigma}_z
$$

$$
\hat{H} = \sum_{j} \omega_j \hat{a}_j^{\dagger} \hat{a}_j + \sum_{j} \chi_j \hat{a}_j^{\dagger} \hat{a}_j \hat{\sigma}_z + \frac{\omega'_q}{2} \hat{\sigma}_z
$$

NEXT: load an excitation into mode 2 $(\pi$ pulse on mode 2)

$$
\hat{H} = \sum_{j} \omega_j \hat{a}_j^{\dagger} \hat{a}_j + \sum_{j} \chi_j \hat{a}_j^{\dagger} \hat{a}_j \hat{\sigma}_z + \frac{\omega'_q}{2} \hat{\sigma}_z
$$

$$
\hat{H} = \sum_{j} \omega_j \hat{a}_j^{\dagger} \hat{a}_j + \sum_{j} \chi_j \hat{a}_j^{\dagger} \hat{a}_j \hat{\sigma}_z + \frac{\omega'_q}{2} \hat{\sigma}_z
$$

quantum optimal control

N. Khaneja, …, S. J. Glaser, *Optimal Control of Coupled Spin Dynamics: Design of NMR Pulse Sequences by Gradient Ascent Algorithms*

J. Magn. Reson. **172**, 296-305 (2005)

robust quantum control

Crosstalk-Robust Quantum Control in Multimode Bosonic Systems

Xinyuan You,^{1,*} Yunwei Lu,² Taeyoon Kim,^{1,2,3} Doğa Murat Kürkçüoğlu,¹ Shaojiang Zhu,¹ David van Zanten,¹ Tanay Roy,¹ Yao Lu,¹ Srivatsan Chakram,⁴ Anna Grassellino,¹ Alexander Romanenko,¹ Jens Koch,^{2,3} and Silvia Zorzetti^{1,†}

¹Superconducting Quantum Materials and Systems Center, Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA 2 Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA ³ Center for Applied Physics and Superconducting Technologies, Northwestern University, Evanston, IL 60208, USA ⁴Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA

programmable computer

a black box* that can implement**** any***** given *f*

* a "device" obeying the laws of physics ** with input & output sizes $n, m \leq N_0$ *** output is provided in finite time

NAND: $\mathbb{B}^2 \to \mathbb{B}^1$

…

random: $\Omega \to \mathbb{B}^1$

bubble sort: $\mathbb{B}^{64 \cdot 100} \rightarrow \mathbb{B}^{64 \cdot 100}$

 $\text{PFD}: \mathbb{B}^{1024} \rightarrow \mathbb{B}^{1024 \cdot 2}$ prime factor decomposition

assessing performance

COMPUTER 1

COMPUTER 2

Quantum computation: Shor's algorithm

Peter Shor