Topics in probability

- Axioms
- Bayes' theorem
- Distributions
- Statistical distances
- Information theory
- HEP data

Statistical distances

• Metrics (i.e. triangle)

Integral probability metrics: $D_{\mathcal{F}}(P,Q) = \sup_{f \in \mathcal{F}} \left| \int f(x)dP(x) - \int f(x)dQ(x) \right|$

- Total variation distance
- Wasserstein (earth-mover's)
- Kolmogorov metric (KS-test)
- P(D) through stochastic process analysis
- Mahalanobis distance

Statistical distances

- Divergences (information geometry) _ F-divergences: $D_f(P \parallel Q) = \int f\left(\frac{dP}{dQ}\right) dQ$
 - Kullback–Leibler divergence (relative entropy)

e.g. in
$$\mathbb{R}$$
, $D_{KL}(P \parallel Q) = \int p(x) \ln \frac{p(x)}{q(x)} dx$

- Jensen–Shannon divergence
 - Symmetrized K-L: $D_{JS}(P \parallel Q) = (D_{KL}(P \parallel M) + D_{KL}(Q \parallel M))/2$ where M = (P + Q)/2
 - The square root is then a metric
 - For any distribution $0 \leq D_{JS} \leq \ln 2$
- Mutual information
 - $I(X, Y) = D_{KL}(P(x, y) \parallel P(x) \otimes P(y))$
 - Divergence between joint distribution and direct product of marginals

K-L in pictures

• Kullback–Leibler divergence (relative entropy) _ e.g. in \mathbb{R} , $D_{KL}(P \parallel Q) = \int p(x) \ln \frac{p(x)}{q(x)} dx$

Entropy

- As K-L is relative entropy, Shannon entropy H(x) is K-L w.r.t. the base measure
 - e.g. counting measure for bytes
 - Unit:
 - Bits if $log_2 \, \mbox{used}$ in K-L
 - Nats if ln used
- Compression algorithms increase entropy per byte
 - Maximum entropy: 8 bits per byte


```
[18]: import gzip
import numpy as np
def entropy(data: bytes):
    data_ints = np.frombuffer(data, dtype="u1")
    _, counts = np.unique(data_ints, return_counts=True)
    probs = counts / counts.sum()
    return -(probs * np.log2(probs)).sum()
```

[19]: data = b"Hodor hodor hodor hodor hodor hodor. Hodor."
print(entropy(data))
print(entropy(gzip.compress(data)))

2.548930957111943 4.571374711042188

[20]: data = b"The quick brown fox jumped over the lazy dog"
print(entropy(data))
print(entropy(gzip.compress(data)))

4.368522527728206 5.2730810667284835

[21]: data = b"<6?hB:wj9eApZK[F^uw~\$4(':"
 print(entropy(data))
 print(entropy(gzip.compress(data)))</pre>

4.483856189774723 4.922749974675523

[22]: data = bytes(range(256))
 print(entropy(data))
 print(entropy(gzip.compress(data)))

8.0 7.9269186236261255

Information theory

• We can measure the mutual information between n_r and n_c in our P(cheat) example

Information theory

- We can measure the mutual information between n_r and n_c in our P(cheat) example
 - If the coin was biased T the channel would have less noise

Probability in HEP

- In HEP we often collect a variable amount of data
 n ~ f_P(n; λ)
 - Each event $x_i \sim f(x; \ldots)$ for some distribution f

Total probability density of sample $P(\{x_1, ..., x_n\}) = f_P(n; \lambda) \prod_i f(x_i; ...) d^n x$

- Often we bin the data: overall PDF is a joint distribution over disjoint regions $P(n_1, ..., n_b) = \prod_i^b f_P(n_i; \lambda_i)$
 - This can be shown in the infinitely small bin limit to be equivalent to the above
 - R. Barlow, Extended maximum likelihood

Poisson process

- In CMS, collision events occur at a rate $\lambda(x, t) = L(t) \sigma_{pp \to X}(x) \epsilon(x, t)$
 - Where (omitting model parameters)
 - L(t) is the instantaneous luminosity
 - $\sigma_{pp \to X}$ is some cross section (differential w.r.t. observables *x*, e.g. muon 4-momentum)
 - ϵ is our detector acceptance/efficiency (hopefully mild t-dependence!)
- Integrate $\lambda(x, t)$ over some region B ("a bin") to get a Poisson pmf

$$\Lambda_i = \int_{B_i} \lambda(x, t) dx dt, \qquad P(N_i \mid \Lambda_i) = \frac{\Lambda_i^{N_i} e^{-\Lambda}}{N_i!}$$

- This is a <u>Poisson Process</u>
 - Binned model: overall PDF is a joint distribution (product) over disjoint regions $P(N_1, ..., N_b) = \prod_i^b f_P(N_i; \Lambda_i)$
 - Un-binned model: conditional on N, λ can be interpreted as a PDF (integrating t)

🛠 Fermilab

$$P(\{x_1, \dots, x_n\}) = f_P(N; \Lambda) \prod_i^N \lambda(x_i) dx_i$$

Inference

Outline: inference

- Bayesian inference
- Maximum likelihood point estimation

Inference

Hypothesis tests

consistent with the experimental data?

Bayes' theorem revisited

- Consider a joint probability space $P(x, \theta)$ on the space (X, Θ)
 - Can condition on θ , i.e. $P(x, \theta) = P(x \mid \theta)P(\theta)$
- Take observation $x \sim P(x \mid \theta_t)$ drawn for fixed *but unknown* $\theta_t \in \Theta$

• We can define $P(\theta \mid x) = \frac{P(x \mid \theta)P(\theta)}{P(x)}$

- To infer distribution of θ
- We will never know θ_t with absolute certainty (is it even in Θ ?)
- The terms have names:
 - $P(\theta \mid x)$ is the *posterior*
 - $P(x \mid \theta)$ is the *likelihood*
 - $P(\boldsymbol{\theta})$ is the prior

$$P(x) = \int P(x \mid \theta) dP(\theta)$$
 is the *evidence*

Priors

- What is our prior $P(\theta)$? We have a few options
- Subjective Bayesian whatever you feel is a good prior
 - Probably challenging for science
 - Everyone's a Bayesian in their head
- Objective Bayesian a fixed recipe, given the likelihood
 - Jeffrey's prior: $\pi(\theta) \propto \sqrt{|I(\theta)|}$ where $I(\theta)$ is the Fisher information
 - Maximum entropy prior: maximize $H[\theta \sim \pi(\theta)]$
 - Uniform, or exponential family if constrained moments
- Conjugate prior: the posterior is in the same function space
 - For exponential-family likelihoods we are guaranteed a conjugate prior
 - Example: $f_{Bi}(k; n, p)$ with known *n*, the conjugate is

$$f_{Beta}(p;\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}p^{\alpha-1}(1-p)^{\beta-1}$$

- The posterior parameters are $\alpha'=\alpha+k, \beta'=\beta+n-k$

Maximum likelihood point estimate

- For a fixed *observation*, can define likelihood $\mathscr{L}(\theta) = P(x_{obs}; \theta)$
 - This is a function of θ , but **not** a probability density
- $\hat{\theta}$ that maximizes this function is the *maximum likelihood estimate* (MLE)

$$\hat{\theta} = \arg \max_{\theta} [\mathscr{L}(\theta)] = \arg \min_{\theta} [-\ln \mathscr{L}(\theta)]$$

- This is a random variable
- We usually minimize the negative log-likelihood (NLL) numerically
 - The core job of MINUIT's MIGRAD routine
- Poisson example: $\hat{\Lambda} = N$

Maximum likelihood trivia

- Absolute value of $\mathscr{L}(\hat{\theta})$ is usually not meaningful
- The MLE has good limiting properties as sample size $\rightarrow \infty$
 - Consistent: sequence of MLEs converges to true value
 - Efficient: variance of MLE saturates the Cramér-Rao lower bound
 - Asymptotic variance of unbiased estimator at least $I^{-1}(\theta)$
 - Asymptotically unbiased
 - Bias can exist for finite samples, can be corrected (with increase in variance)
- The likelihood (and it's maximum) is invariant under change of variables
 Again, it is not a PDF!
- Ok, but this is just a *point*. Can frequentists say more without a prior?
 - Likelihood ratios let us make relative statements, **but** the statements are always of the form "assuming a value of θ , would x_{obs} be a likely outcome?" This is not $P(\theta)$
 - Hypothesis tests and frequentist confidence intervals/sets
 - Next time

Fisher information

- This is defined as the expectation $I(\theta) = E_{x \sim f(x;\theta)} \left[\left(\frac{\partial}{\partial \theta} \ln f(x;\theta) \right)^2 \right]$
 - i.e. the variance of the score

Under typical conditions,
$$I(\theta) = -E_{x \sim f(x;\theta)} \left[\frac{\partial^2 \ln \mathscr{L}(\theta)}{\partial^2 \theta} \right]$$

- Empirical Fisher information is the Hessian of $-\ln \mathscr{L}$
 - Let's expand this function around the MLE $\hat{\theta}$:

$$-\ln \mathscr{L}(\theta) \approx -\ln \mathscr{L}(\hat{\theta}) + \frac{\partial (-\ln \mathscr{L})}{\partial \theta} \Big|_{\hat{\theta}} \cdot (\theta - \hat{\theta}) + \frac{1}{2} (\theta - \hat{\theta})^{\mathsf{T}} I(\hat{\theta}) (\theta - \hat{\theta}) + \cdots$$

g(x)f(x)dx

🔁 Fermilab

 $E_{x \sim f(x)}[g(x)] = \left| \right|$

- $\approx \mathscr{L}_0 + f_N(\theta; \hat{\theta}, I^{-1}(\hat{\theta}))$
- Looks like a χ^2 up to a factor 2! This is why we often plot $-2\Delta\ln\mathscr{L}$
 - Will revisit with Wilk's theorem later
- MINUIT HESSE

Inferring P(cheat)

- · Setup reminder: flip a fair coin without showing anyone the result
 - If heads (H), raise your hand (
 - If tails (T): raise your hand only if you have ever cheated on your homework
- We have a model describing probability of observing n_r given n, p_c

$$f(n_r; n, p_c) = \sum_{n_t=0}^n f_{Bi}(n_t; n, 1/2) f_{Bi}(n_r + n_t - n; n_t, p_c)$$

- We observed $n_r = 15$ and know n = 24. What can we infer about p_c ?
 - Frequentists: determine how *likely* n_r is given a *hypothesized* but *fixed* p_c
 - Bayesians: promote p_{c} to a random variate and use Bayes' theorem
 - Need a measure on the space $p_c \in [0,1]$, call it $\pi(p_c)$
 - The *joint* probability is then $f(n_r, p_c; n) = f(n_r | p_c; n)\pi(p_c)$
- Use $f(n_r | p_c)$ vs. $f(n_r; p_c)$ to distinguish random variates from parameters - I can barely keep this up

🚰 Fermilab

Inferring P(cheat) as a frequentist

- Scan $-2\ln \mathscr{L}(p_c) = -2\ln f(n_r; n, p_c)$
- Find minimum
- ???
- Profit

Inferring P(cheat) as a Bayesian

- What is our prior $\pi(p_c)$? We have a few options
 - Likelihood is not exponential-family, hard to find conjugate
 - Try Binomial conjugate $f_{Beta}(p_c; \alpha, \beta)$
 - Jeffrey's* prior: $\alpha=\beta=1/2$
 - Maximum entropy prior: $\alpha=\beta=1$
 - "They're good kids" prior: $\alpha \ll 1{,}\beta = 1$

Inference example in HEP

- Given this data and a model for signal and background, I might infer:
 - The amount of signal present (a parameter of interest, or POI)
 - The functional form of the background, if a-priori unknown
 - Parameterized by nuisance parameters (more later)
 - Which hypothesis (S+B or B-only) is more consistent

0.005

MC background

😤 Fermilab

Inference for collider simulation

- The whole picture is more complex
 - We often cannot compute $P(x \mid \theta)$, but we can efficiently sample it
 - → surrogate model using Monte Carlo (MC) estimates of bin yields

Templates

- We often build models via template histograms derived from MC
 - Typically to infer signal strength μ = normalization of signal template

