Topics in probability

- Axioms
- Bayes' theorem
- Distributions
- Statistical distances
- Information theory
- HEP data

Statistical distances

• Metrics (i.e. triangle)

- Integral probability metrics: $D_{\mathscr{F}}(P,Q) = \sup_{f \in \mathscr{F}} \left| \int f(x) dP(x) - \int f(x) dQ(x) \right|$

- Total variation distance
- Wasserstein (earth-mover's)
- Kolmogorov metric (KS-test)
- P(D) through stochastic process analysis
- Mahalanobis distance

 $q(x)$

Statistical distances

- Divergences (information geometry) - F-divergences: *Df*(*^P* [∥] *^Q*) ⁼ [∫] *^f* (*dP dQ*) *dQ*
	- Kullback–Leibler divergence (relative entropy)

e.g. in R,
$$
D_{KL}(P \parallel Q) = \int p(x) \ln \frac{p(x)}{q(x)} dx
$$

- Jensen–Shannon divergence
	- Symmetrized K-L: $D_{JS}(P \parallel Q) = (D_{KL}(P \parallel M) + D_{KL}(Q \parallel M))/2$ where $M = (P + Q)/2$
	- The square root is then a metric
	- For any distribution $0 \leq D_{JS} \leq \ln 2$
- Mutual information
	- *a I*(*X*, *Y*) = *D*_{*KL*}(*P*(*x*, *y*) ∥ *P*(*x*) ⊗ *P*(*y*))
		- Divergence between joint distribution and direct product of marginals

K-L in pictures

• Kullback–Leibler divergence (relative entropy) $-$ e.g. in ℝ, $D_{KL}(P \parallel Q) = \int p(x) \ln \frac{p(x)}{q(x)}$ *dx*

Entropy

- As K-L is relative entropy, Shannon entropy $H(x)$ is K-L w.r.t. the base measure
	- e.g. counting measure for bytes
	- Unit:
		- \bullet Bits if \log_2 used in K-L
		- Nats if In used
- Compression algorithms increase entropy per byte
	- Maximum entropy: 8 bits per byte


```
[18]:import gzip
import numpy as np
def entropy(data: bytes):
     data ints = np.frombuffer(data, dtype="u1")
     _, counts = np.unique(data_ints, return_counts=True)
     probs = counts / counts.sum()return -(\text{probs } * \text{ np.log2}(\text{probs})) \cdot \text{sum}()
```
 $data = b''$ Hodor hodor hodor hodor hodor hodor. Hodor." $[19]:$ $print(entropy(data))$ print(entropy(gzip.compress(data)))

2.548930957111943 4.571374711042188

 $data = b''$ The quick brown fox jumped over the lazy dog" $[20]:$ $print(entropy(data))$ print(entropy(gzip.compress(data)))

4.368522527728206 5.2730810667284835

 $data = b''<6?hB:wj9eApZK[F^{\sim}uw\sim $4('::")$ $[21]:$ print(entropy(data)) print(entropy(gzip.compress(data)))

> 4.483856189774723 4.922749974675523

 $data = bytes(range(256))$ $[22]$: print(entropy(data)) print(entropy(gzip.compress(data)))

> 8.0 7.9269186236261255

Information theory

• We can measure the mutual information between n_r and n_c in our P(cheat) example

Information theory

- We can measure the mutual information between n_r and n_c in our P(cheat) example
	- If the coin was biased T the channel would have less noise

Probability in HEP

- In HEP we often collect a variable amount of data $- n$ ∼ $f_P(n; λ)$
	- Each event x_i ∼ $f(x; ...)$ for some distribution f

- Total probability density of sample $P(\lbrace x_1,...x_n \rbrace) = f_P(n; \lambda)$ *n* \int *f*(*x_i*; ...)*dⁿx i*

- Often we bin the data: overall PDF is a joint distribution over disjoint regions $P(n_1, ..., n_b) =$ *b* ∏ *i* $f_P(n_i; \lambda_i)$
	- This can be shown in the infinitely small bin limit to be equivalent to the above
		- R. Barlow, *Extended maximum likelihood*

Poisson process

- In CMS, collision events occur at a rate $\lambda(x, t) = L(t) \, \sigma_{pp \to X}(x) \, \epsilon(x, t)$
	- Where (omitting model parameters)
		- \bullet $L(t)$ is the instantaneous luminosity
		- $\sigma_{pp \to X}$ is some cross section (differential w.r.t. observables x , e.g. muon 4-momentum)
		- \cdot ϵ is our detector acceptance/efficiency (hopefully mild t-dependence!)
- Integrate $\lambda(x, t)$ over some region B ("a bin") to get a Poisson pmf

$$
\Lambda_i = \int_{B_i} \lambda(x, t) dx dt, \qquad P(N_i | \Lambda_i) = \frac{\Lambda_i^{N_i} e^{-\Lambda_i}}{N_i!}
$$

• This is a [Poisson Process](https://en.wikipedia.org/wiki/Poisson_point_process)

-

- Binned model: overall PDF is a joint distribution (product) over disjoint regions $P(N_1, ..., N_b) =$ *b* ∏ *i* $f_P(N_i; \Lambda_i)$
- Un-binned model: conditional on N, λ can be interpreted as a PDF (integrating t)

줖 Fermilab

$$
P(\lbrace x_1, \ldots x_n \rbrace) = f_P(N; \Lambda) \prod_i^N \lambda(x_i) dx_i
$$

Inference

Outline: inference

- Bayesian inference
- Maximum likelihood point estimation

Inference

Hypothesis tests

consistent with the experimental data?

Bayes' theorem revisited

- Consider a joint probability space $P(x, \theta)$ on the space (X, Θ)
	- *–* Can condition on θ , i.e. $P(x, \theta) = P(x | \theta)P(\theta)$
- Take observation $x \thicksim P(x\,|\,\theta_{t})$ drawn for fixed *but unknown* $\theta_{t} \in \Theta$

• We can define $P(\theta | x) =$ $P(x | \theta)P(\theta)$ *P*(*x*)

- To infer distribution of *θ*
- We will never know θ_t with absolute certainty (is it even in Θ ?)
- The terms have names:
	- $P(\theta | x)$ is the *posterior*
	- $P(x | \theta)$ is the *likelihood*
	- $P(\theta)$ is the *prior*

$$
P(x) = \int P(x | \theta) dP(\theta)
$$
 is the evidence

Priors

- What is our prior $P(\theta)$? We have a few options
- Subjective Bayesian whatever *you* feel is a good prior
	- Probably challenging for science
	- *Everyone's a Bayesian in their head*
- Objective Bayesian a fixed recipe, given the likelihood
	- \sim Jeffrey's prior: $\pi(\theta) \propto \sqrt{|I(\theta)|}$ where $I(\theta)$ is the Fisher information
	- Maximum entropy prior: maximize *H*[*θ* ∼ *π*(*θ*)]
		- Uniform, or exponential family if constrained moments
- Conjugate prior: the posterior is in the same function space
	- For exponential-family likelihoods we are guaranteed a conjugate prior
	- Example: $f_{Bi}(k; n, p)$ with known n , the conjugate is

$$
f_{Beta}(p; \alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}
$$

• The posterior parameters are $\alpha' = \alpha + k$, $\beta' = \beta + n - k$

Maximum likelihood point estimate

- For a fixed *observation*, can define likelihood $\mathscr{L}(\theta) = P(x_{obs}; \theta)$
	- This is a function of θ , but *not a probability density*
- \cdot $\hat{\theta}$ that maximizes this function is the *maximum likelihood estimate* (MLE)

$$
\hat{\theta} = \arg \max_{\theta} [\mathcal{L}(\theta)] = \arg \min_{\theta} [-\ln \mathcal{L}(\theta)]
$$

- This is a random variable
- We usually minimize the negative log-likelihood (NLL) numerically
	- The core job of MINUIT's MIGRAD routine
- Poisson example: $\hat{\Lambda} = N$

Maximum likelihood trivia

- Absolute value of $\mathscr{L}(\hat{\theta})$ is usually not meaningful
- The MLE has good limiting properties as sample size→∞
	- Consistent: sequence of MLEs converges to true value
	- Efficient: variance of MLE saturates the [Cramér–Rao lower bound](https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_lower_bound)
		- Asymptotic variance of unbiased estimator at least *I*−¹ (*θ*)
	- Asymptotically unbiased
		- Bias can exist for finite samples, can be corrected (with increase in variance)
- The likelihood (and it's maximum) is invariant under change of variables - Again, it is not a PDF!
- Ok, but this is just a *point*. Can frequentists say more without a prior?
	- Likelihood ratios let us make relative statements, **but** the statements are always of the form "assuming a value of θ , would x_{obs} be a likely outcome?" This is not $P(\theta)$
	- Hypothesis tests and frequentist confidence intervals/sets
		- Next time

Fisher information

- This is defined as the expectation $I(\theta) = E_{x \sim f(x; \theta)}$ \mathcal{L} ∂ ∂*θ* $\ln f(x; \theta)$ \int 2]
	- i.e. the variance of the *score*

Under typical conditions,
$$
I(\theta) = -E_{x \sim f(x;\theta)} \left[\frac{\partial^2 \ln \mathcal{L}(\theta)}{\partial^2 \theta} \right]
$$

- Empirical Fisher information is the Hessian of $-\ln\mathscr{L}$
	- Let's expand this function around the MLE $\hat{\theta}$:

$$
- \ln \mathcal{L}(\theta) \approx - \ln \mathcal{L}(\hat{\theta}) + \frac{\partial (-\ln \mathcal{L})}{\partial \theta} \Big|_{\hat{\theta}} \cdot (\theta - \hat{\theta}) + \frac{1}{2} (\theta - \hat{\theta})^{\top} I(\hat{\theta}) (\theta - \hat{\theta}) + \cdots
$$

 $E_{x \sim f(x)}[g(x)] = \int g(x)f(x)dx$

춮 Fermilab

- $\approx \mathcal{L}_0 + f_N(\theta; \hat{\theta}, I^{-1}(\hat{\theta}))$
- Looks like a χ^2 up to a factor 2! This is why we often plot $-2\Delta\ln\mathscr{L}$
	- Will revisit with Wilk's theorem later
- MINUIT HESSE

Inferring P(cheat)

-

- Setup reminder: flip a fair coin without showing anyone the result
	- If heads (H), raise your hand (\mathbf{W})
	- If tails (T): raise your hand **V** only if you have ever cheated on your homework
- We have a model describing probability of observing n_r given n , p_c

$$
f(n_r; n, p_c) = \sum_{n_t=0}^{n} f_{Bi}(n_t; n, 1/2) f_{Bi}(n_r + n_t - n; n_t, p_c)
$$

- We *observed* $n_r = 15$ *and know* $n = 24$ *. What can we <i>infer* about p_c ?
	- Frequentists: determine how *likely* n_r is given a *hypothesized* but *fixed* p_c
	- Bayesians: promote p_c to a random variate and use Bayes' theorem
		- Need a measure on the space $p_{c} \in [0,1]$, call it $\pi(p_{c})$
		- The *joint* probability is then $f(n_r, p_c; n) = f(n_r | p_c; n) \pi(p_c)$
- Use $f(n_r|p_c)$ vs. $f(n_r;p_c)$ to distinguish random variates from parameters - I can barely keep this up

Inferring P(cheat) as a frequentist

- Scan $-2 \ln \mathcal{L}(p_c) = -2 \ln f(n_r; n, p_c)$
- Find minimum
- ???
- Profit

Inferring P(cheat) as a Bayesian

- What is our prior $\pi(p_c)$? We have a few options
	- Likelihood is not exponential-family, hard to find conjugate
	- Try Binomial conjugate $f_{Beta}(p_c; \alpha, \beta)$
		- Jeffrey's* prior: $\alpha = \beta = 1/2$
		- Maximum entropy prior: $\alpha = \beta = 1$
		- $\bullet \,$ "They're good kids" prior: $\alpha \ll 1, \beta = 1$

Inference example in HEP

- Given this data and a model for signal and background, I might infer:
	- The amount of signal present (a *parameter of interest*, or POI)
	- The functional form of the background, if a-priori unknown
		- Parameterized by *nuisance parameters* (more later)
	- Which hypothesis (S+B or B-only) is more consistent

0.005

MC background

춮 Fermilab

Inference for collider simulation

- The whole picture is more complex
	- We often cannot compute $P(x \,|\, \theta)$, but we can efficiently sample it
		- ➜ surrogate model using Monte Carlo (MC) estimates of bin yields

Templates

- We often build models via template histograms derived from MC
	- Typically to infer signal strength μ = normalization of signal template

