Topics in probability

» Statistical distances
* Information theory

« HEP data
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Statistical distances

* Metrics (i.e. triangle)

[f (X)dP(x) — [f (1)dQ(x)

_ Integral probability metrics: Dg:(P, Q) = sup

fEF

« Total variation distance
« Wasserstein (earth-mover’s)

- Mahalanobis distance

« Kolmogorov metric (KS-test)
- P(D) through stochastic process analysis l A

1
Euclidean Mahalonobis
=
= 08|
®
S
i 0.6
)
=
w 04f
=
=
o o2t
0 i i
4 2 0 2 4
X
JE :
3¢ Fermilab

24 Dec 8, 2023 Nick Smith | Statistics



Statistical distances

* Divergences (information geometry)

F-divergences: DA(P || Q) Jf( ar > dQ
-div : = _—
] 'f 40

 Kullback—Leibler divergence (relative entropy)
by

_eg.inR, D (P Q) = Jp(x)ln &dx

q(x)

- Jensen—Shannon divergence
- Symmetrized K-L: D;o(P || Q) = (Dg;(P || M) 4+ Dy (Q || M))/2 where M = (P + Q)/2
- The square root is then a metric
- For any distribution 0 < D;¢ < In?2

* Mutual information
- I(X,Y) = Di; (P(x,y) || P(x) ® P(y))

 Divergence between joint distribution and direct product of marginals
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K-L in pictures

* Kullback—Leibler divergence (relative entropy)
~eg.inR,Di; (P || Q) = Jp(x)ln @dx
q

Not OK Not OK
Forward-KL large . - Reverse-KL large
OK, KL small
OK, KL small
Forward KL: Dk, (P||Q) Reversed KL: Dy, (Q|| P)

https://hugocisneros.com/notes/kullback_leibler_divergence/
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https://hugocisneros.com/notes/kullback_leibler_divergence/

Entropy

* As K-L is relative entropy,
Shannon entropy H(x) is K-L
w.r.t. the base measure
- e.g. counting measure for bytes
- Unit:

. Bits if log, used in K-L
. Nats if In used

* Compression algorithms
increase entropy per byte
- Maximum entropy: 8 bits per byte
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[21]:

[22]:

import gzip
import numpy as np

def entropy(data: bytes):
data_ints = np.frombuffer(data, dtype="ul")
_, counts = np.unique(data_ints, return_counts=True)
probs = counts / counts.sum()
return -(probs * np.log2(probs)).sum()

data = b"Hodor hodor hodor hodor hodor hodor. Hodor."
print(entropy(data))
print(entropy(gzip.compress(data)))

2.548930957111943
4.571374711042188

data = b"The quick brown fox jumped over the lazy dog"
print(entropy(data))
print(entropy(gzip.compress(data)))

4.368522527728206
5.2730810667284835

data = b"<6?hB:wj9eApZK[F uw~$4(":"
print(entropy(data))
print(entropy(gzip.compress(data)))

4.483856189774723
4.922749974675523

data = bytes(range(256))
print(entropy(data))
print(entropy(gzip.compress(data)))

8.0
7.9269186236261255
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Information theory

* We can measure the mutual

information between n,. and n.. in

our P(cheat) example

n=40, p.=0.1, p=0.5

0 10 20 30 40
Ne
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Information theory

2.5 1
 We can measure the mutual 2.0 - . .
. . : n=40
information between n,. and n.. in - | pcoLpkos

nats

our P(cheat) example pc=0.5,p;=0.9

- If the coin was biased T the channel 1.0 - —— pc=0.9,p:=0.9
would have less noise
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Probability in HEP

* In HEP we often collect a variable amount of data

- n~ fp(n; )
- Each event x; ~ f(x; ...) for some distribution f

n
_ Total probability density of sample P({x,...x,}) = fp(n; 1) Hf(xi; Lod ' x

* Often we bin the data: overall PDF is a joint distribution over disjoint regions
b
CP(ny, ) = [ ] S )

- This can be shown in the infinitely small bin limit to be equivalent to the above
* R. Barlow, Extended maximum likelihood
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Poisson process

. In CMS, collision events occur at a rate A(x, f) = L(7) app%X(x) e(x, 1)

- Where (omitting model parameters)
. L(?) is the instantaneous luminosity
« Opyx is some cross section (differential w.r.t. observables x, e.g. muon 4-momentum)

* ¢ is our detector acceptance/efficiency (hopefully mild t-dependence!)

. Integrate A(x, ) over some region B (“a bin”) to get a Poisson pmf
Alig=A

A= J A(x, Hdxdt, P(N;|A) = ———
) B N;!

* This is a Poisson Process
- Binned model: overall PDF is a joint distribution (product) over disjoint regions

b
POV, ... Ny) = [ [0z A

- Un-binned model: conditional on N, A1 can be interpreted as a PDF (integrating t)

N
P({xy. x, ) = LW A [ [ A6y,
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https://en.wikipedia.org/wiki/Poisson_point_process

Inference
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Outline: inference

* Bayesian inference
* Maximum likelihood point estimation
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Inference

Probability

~_Data|

Data fluctuate according
to process randomness

X, ~ P(x|0)

Inference

Model uncertainty due to
fluctuations of the data sample

P@O|x,,)??
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Hypothesis tests

Which hypothesis is the most
consistent with the experimental
data?
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Bayes’ theorem revisited

- Consider a joint probability space P(x, 6) on the space (X, ®)
- Can conditionon 4, i.e. P(x,0) = P(x|0)P(0)
- Take observation x ~ P(x|6,) drawn for fixed but unknown 6, € ©
P(x|0)P(0)

. We can define P(6|x) =
P(x)

- To infer distribution of &

- We will never know @, with absolute certainty (is it even in ©?)
* The terms have names:

- P(@]x) is the posterior

- P(x|0) is the likelihood

- P(0) is the prior

_Px) = JP(x |0)dP(0) is the evidence

2% Fermilab
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Priors

« What is our prior P(6)? We have a few options

* Subjective Bayesian - whatever you feel is a good prior
- Probably challenging for science
- Everyone’s a Bayesian in their head
* Objective Bayesian - a fixed recipe, given the likelihood
- Jeffrey’s prior: 7(0) 1/ | 1(0)| where I(0) is the Fisher information
- Maximum entropy prior: maximize H[@ ~ 7(0)]
 Uniform, or exponential family if constrained moments

 Conjugate prior: the posterior is in the same function space
- For exponential-family likelihoods we are guaranteed a conjugate prior
- Example: f5,(k; n, p) with known n, the conjugate is
a3, ) = D et —
Beta\P> & _F((I+,B)p P
. The posterior parametersarea’ = a+ k,f = +n—k
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Maximum likelihood point estimate

- For a fixed observation, can define likelihood £ (0) = P(x,,,; 0)
- This is a function of 6, but not a probability density

. 0 that maximizes this function is the maximum likelihood estimate (MLE)
.0 =arg max,[Z(0)] = arg min [—1In Z(0)]
- This is a random variable

- We usually minimize the negative log-likelihood (NLL) numerically
» The core job of MINUIT’s MIGRAD routine

: | — N=1
. Poisson example: A = N 035 =S
e N=10
0.30
0.25
g 0.20
0.15
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0.00 T f f
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A
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Maximum likelihood trivia

. Absolute value of & (é) is usually not meaningful

* The MLE has good limiting properties as sample size =
- Consistent: sequence of MLEs converges to true value
- Efficient: variance of MLE saturates the Cramér—Rao lower bound
. Asymptotic variance of unbiased estimator at least / _1(9)
- Asymptotically unbiased
 Bias can exist for finite samples, can be corrected (with increase in variance)
* The likelihood (and it’'s maximum) is invariant under change of variables
- Again, it is not a PDF!

* Ok, but this is just a point. Can frequentists say more without a prior?
- Likelihood ratios let us make relative statements, but the statements are always of the
form “assuming a value of 6, would x_, . be a likely outcome?” This is not P(0)

- Hypothesis tests and frequentist confidence intervals/sets
* Next time
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https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_lower_bound

Fisher information

E,ole@] = | g00f()dx

* This is defined as the expectation

3 2
I(0) = E\ 1) [(@ In f(x; 8)) ]

- i.e. the variance of the score

020
 Empirical Fisher information is the Hessian of —1n &
Let’s expand this function around the MLE 0:

—In Z(0) ~ — In Z(0) + a(_;;g) ‘@ (0 -0) + %(9 —NTIO)O - ) + -

~ Lo+ f(6;0,17(8))
Looks like a ¥ up to a factor 2! This is why we often plot —2A In &

* Will revisit with Wilk’s theorem later
MINUIT HESSE

| = 0*In Z(0)
_ Under typical conditions, 1(0) = — E, 4.
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Inferring P(cheat)

* Setup reminder: flip a fair coin without showing anyone the result
- If heads (H), raise your hand (\_*)
- If tails (T): raise your hand _- only if you have ever cheated on your homework

- We have a model describing probability of observing n,. given n, p..

n
fnsn,p) = Z Jpins n, 1/ 2)fpi(n, + ny — nin, p)
n=0
« We observed n, = 15 and know n = 24. What can we infer about p_.?
- Frequentists: determine how likely n, is given a hypothesized but fixed p.,
- Bayesians: promote p,. to a random variate and use Bayes’ theorem
- Need a measure on the space p,. € [0,1], call it #(p,)

. The joint probability is then f(n, p.; n) = f(n. | p.; n)x(p,)

. Use f(n,|p,) vs. f(n,; p.) to distinguish random variates from parameters
- | can barely keep this up
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Inferring P(cheat) as a frequentist

« Scan —2In ZL(p,) = —2Inf(n,;n,p,.)

* Find minimum
o 77?7

* Profit
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Inferring P(cheat) as a Bayesian

- What is our prior z(p,.)? We have a few options
- Likelihood is not exponential-family, hard to find conjugate
- Try Binomial conjugate f5,,,(P; @, )
. Jeffrey’s* prior:a = f = 1/2
« Maximum entropy prior: @ = f = 1
. “They’re good kids” prior: a < 1, =1

Jeffrey's prior Flat prior
4-| -== n(pc;a=0.5,8=0.5) === n(p;a=1B=1)
— p(pc|nr=15) - 2.0 A — p(pc|nr=15)
Py 3 o
2 3 :
C —
g % 1.5
2 2
z° 3 1.0 -
©
3 3
o o
a 11 “ 05
0.0
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Inference example in HEP

* Given this data and a model for signal and background, | might infer:

- The amount of signal present (a parameter of interest, or POI)
- The functional form of the background, if a-priori unknown

« Parameterized by nuisance parameters (more later)
- Which hypothesis (S+B or B-only) is more consistent
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Inference for collider simulation

* The whole picture is more complex

- We often cannot compute P(x | @), but we can efficiently sample it
=*» surrogate model using Monte Carlo (MC) estimates of bin yields

Detector Shower Parton-level Theory
Observables : : .
Interactions splittings momenta parameters
T < 2 € Zg *—— Zp < 0

,,. i—\“ ] ‘f": H» .;
plal6) = [dza [dz, [az, plalza) p(22) p(216)
\ ]
\_'_l \ Y J |
Features Latent Variables Model Parameters

diagram: K. Cranmer
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Templates

* We often build models via template histograms derived from MC
- Typically to infer signal strength i = normalization of signal template
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